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Abstract. For machinery product which experienced several operating conditions, this paper 

proposes a framework of fuzzy reliability analysis of machinery accelerated testing. Due to the 

non-stationary of the vibration signals, a Gaussian mixture model (GMM) method is introduced 

to obtain the degradation index through calculating the overlap between current feature set and 

the historical baseline set. The features in four domains are extracted. Considered that the 

uncertainties exit in feature extraction and health assessment, a fuzzy regression model is used 

to describe the degradation path at each operating condition and compute fuzzy quasi time to 

failures (q-TTFs). Meanwhile, the relationship between q-TTFs and environmental variables are 

identified by a linear model, through which the fuzzy reliability analysis can be conducted with 

the most appropriate lifetime distribution. An industrial application is used to verify the 

effectiveness of the proposed framework and the results has confirmed a good consistency with 

the true ones. 
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1 Introduction 

 

In many engineering applications, such as airplanes, wind turbines and automobiles, rotating 

machinery parts are widely used and play a key role in their functions. Two common used 

machinery products are bearing and gear, which must have the attribute of high reliability [1]. 

The health monitoring of their status will not only prevent the unscheduled system downtime 

but also save related personnel and property losses. Thus, the research of condition-based 

maintenance (CBM) [1, 2] and prognostics and health management (PHM) [3] have being 

studied during the past decades. The purpose of the health monitoring is to tell the how far is 

the current state to system/component failure, i.e. remaining useful life (RUL), and make 

corresponding maintenance policy. A host of methods have been provided to conduct RUL 

prediction which are model-based, data-driven and hybrid models [1, 2, 4, 5]. 

The process of implementing CBM or PHM to machinery products is mainly consist of 

three aspects: data acquisition, data processing and maintenance decision support [2]. In general, 

the acquired data is vibration signal that cannot be directly used for RUL prediction, which is 

significantly different from electronic products or others whose degradation indexes are explicit, 

e.g. the light output of LEDs [6] and relative resistance in lithium-ion cells [7]. Although some 

statistical models can be applied to the vibration signals [8], it is still not a universal method. 

Thus, feature extraction methods are introduced to find the possible indexes that not be limited 

to time domain and can reflect the health status of the machinery products. 

Feature extraction methods are also called signal processing techniques [2] that is to acquire 

health indexes from the raw vibration signals. The most common methods are time-domain, 

frequency-domain, time-frequency and information-domain analysis [9-11]. For example,  

Huang, et al.[12] obtained six vibration features from the ball bearing signals, which then are 

used to train the back propagation neural network and produce a performance degradation 

indicator for residual life prediction. Ocak, et al.[13] selected the node energies of 



decomposition tree as the features for bearing failure prognostics. In some applications, the 

features from the vibration signal cannot be selected as degradation indexes due to the dynamic 

and non-stationary properties of the vibration signal, which may be influenced by the 

uncertainties of the ambient environment or the complexity of machinery failure mechanism. 

To solve above problem, a new aspect is proposed which considers that the machinery 

products are undergoing a gradual deterioration process. Thus, there must have some kind of 

difference between current status and historical health status using the extracted features. Liu, et 

al.[14] proposed a similarity-based method to quantitative the overlap between the distribution 

of the most recent status and the baseline health status and obtained an index named confidence 

value (CV) for health assessment. Following this idea, Liao, et al.[11] proposed a machine 

degradation assessment based on fixed cycle features test using Gaussian Mixture Model 

(GMM) and also used CV index to reflect the degradation status. Wang, et al.[15] proposed an 

integrated feature selection approach to select the features for bearing health assessment and 

used GMM method to derive a health index which can be tracked for RUL prediction. 

The literature of machinery health assessment mainly concentrates on specific eminent 

environment. While for product that experienced different operating conditions [9, 16, 17], 

limited papers make research on identify the influence of the environment variables to the 

failure of the system or product and enhance their reliability level. Meanwhile, the uncertainties 

in feature extraction and health assessment should be considered since they may affect user’s 

belief on the assessment results. The uncertainties may originate from geometry [18], 

measurements [19] or degradation process modeling [20], etc. 

Hence, based on abovementioned work, a framework of fuzzy reliability analysis of 

machinery accelerated testing is proposed in this paper. The paper is organized as follows: the 

proposed framework is given in Section 2. In section 3, the features in four domains are 

obtained from raw vibration signals and the degradation indexes at each operating condition are 

acquired through GMM methods. In order to capture the inherent uncertainties in the 

degradation indexes, a fuzzy regression method is used to model the degradation path through 

which the fuzzy quasi time to failures (q-TTFs) are obtained in Section 4. Meanwhile, a linear 

model is provided to identify the relationship between q-TTFs and the operating conditions. In 

Section 5, the fuzzy reliability analysis is given with the selection of lifetime distribution. 

Section 6 illustrates an application of bearing accelerated degradation data from IEEE PHM 

2012 data challenge to validate the effectiveness of the proposed framework in rotating 

machinery products. Discussions and conclusions are presented in Section 7 and 8. 

 

2 The Proposed Framework of Fuzzy Analysis for Machinery Accelerated Testing 

 

The proposed framework of fuzzy analysis of machinery accelerated testing is given in 

Figure 1. The framework consists of three part: degradation index acquisition, degradation 

modeling and fuzzy reliability analysis. 

The first part is to obtain a degradation index from the raw vibration signals to reflect the 

health status of products. We at first de-noised the signals, if needed, by wavelet method to 

eliminate the extra influence of environmental noise. Then, the features in four domains, i.e. 

time, frequency, time-frequency and information domains, are extracted to obtain the overall 

information of products. Since the feature set is high dimensional, principal component analysis 

(PCA) method is introduced to reduce the dimension of the feature set based on the cumulated 

percentage of the principal components. After that, the GMM method is used to compute the 

degradation index by evaluating the overlap rate (CV) between the baseline features with the 

real-time ones. If the CV is near 1, the real-time health status is approximately normal, 

otherwise deterioration. 

The second part is to model the degradation path of CV results and obtain the q-TTFs at 

each accelerated operating conditions. Due to the inherent uncertainties in feature extraction 

and health assessment, a fuzzy regression method is used to model the CV results with 

fuzziness and extrapolate the q-TTFs with the failure threshold. Before the fuzzy q-TTFs is 



used for reliability analysis, the acceleration model should be given to transfer the q-TTFs in 

accelerated operating conditions to normal ones. Thus, a linear model is used to find the 

relationship between the q-TTFs and the environmental variables. In addition, the contribution 

of each environmental variable or their combination to the failure of products can be expressed 

by the coefficients of the linear model. 

The last part is to conduct fuzzy reliability analysis based on the fuzzy q-TTFs in normal 

operating condition, which can provide reliable information for maintenance decision-making 

through reliability, MTTF or other indexes. The following Sections will address the analysis of 

accelerated testing with vibration data in detail. 

 

 
Fig. 1. The framework of fuzzy analysis of machinery accelerated testing 

 

3 The Degradation Index 

 

To implement the reliability prediction for machinery products which experience a gradual 

deterioration process that cannot be directly acquired from raw vibration data, feature extraction 

methods are used to find the degradation features. In general, one feature may be not enough to 

reflect the degradation status. For instance, the kurtosis factors from the vertical accelerometer 

signal is suitable for describing a gradual degradation for some bearings, but not for others [17]. 

Thus, the integration of multiple features is needed which can comprehensively reflect the 

degradation state of products [15]. In this part, the degradation index CV is obtained by GMM 

method using features from four domains, which quantifies the overlap rate between current 

feature set (degradation status) and baseline set (normal status). 

 

3.1 Feature Extraction and Principal Component Analysis 

 

Feature extraction is to understand the performance of machinery product from the vibration 

signal s(t) at different aspect, which mainly includes time-domain, frequency-domain, time-

frequency domain and information entropy as follows[2, 3]: 

1) Time-domain 

The time-domain features present the transient variation of the vibration signal, which can 

directly reflect the health status of the products. In general, the features can be obtained from 

the statistical analysis, e.g. mean, variance, root mean square, peak, peak index, skewness, 

kurtosis, waveform, pulse and margin index, etc. 

2) Frequency-domain 

The frequency-domain features are transformed from the original time-domain signal using 

spectrum analysis, e.g. fast Fourier transform (FFT), to have a comprehensive understanding of 
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the signal over the whole spectrum, e.g. the centre frequency, mean square frequency and 

frequency variance. 

3) Time-frequency domain 

The time-frequency analysis method utilizes the strengths for both time-domain and 

frequency-domain analysis, and reflects the signal energy into two directions for the purpose of 

capturing fault pattern and conducting failure prognostics. In general, wavelet packet 

decomposition (WPD) and Hilbert-Huang transform (HHT) are widely used for time-frequency 

analysis. The energy of the first eight nodes from WPD method, which is decomposed into 4 

layers with daubechies wavelet as the mother wavelet, and HHT energy are selected as the 

features in this domain. 

4) Information entropy 

Information entropy is a measure of the uncertainty of the signal. A higher value indicates a 

higher uncertainty of the signal. Following this idea, the marginal spectrum entropy, HHT 

marginal spectrum entropy and HHT energy spectrum entropy are computed for feature analysis. 

Assumed that n signals are recorded during the experiment. The feature set is  𝐗 =

[𝑥1, 𝑥2, … , 𝑥𝑝]′, where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]. To reduce the effect of different feature unit, 𝐗 is 

normalized into [0, 1] for each feature by 𝑥𝑖− = (𝑥𝑖𝑗 − 𝑚𝑖𝑛(𝑥𝑖−)) (𝑚𝑎𝑥(𝑥𝑖−) − 𝑚𝑖𝑛(𝑥𝑖−))⁄ , 

 𝑗 = 1,2, … , 𝑛, 𝑥𝑖− and  𝑥̅𝑖− are the 𝑖𝑡ℎ row of feature set 𝐗 and its mean value. 

The high dimensional feature set will led to the curse of dimensionality and cause heavy 

computational effort on the calculations. To facilitate the process of health assessment, PCA 

method [21] is introduced, which is a linear dimension reduction method through mapping the 

original set to a orthogonal space while minimizing the total squatted reconstruction error, see 

Figure 2. 
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Fig. 2 Diagram of PCA: mapping from X to Y 

 

The 𝑝 × 𝑝 covariance matrix 𝑅𝑥 and its eigenvalue analysis are 

 

    
T

xR X X X X and ,  xR  (1) 

 

where, 𝜐 is the eigenvector, and 𝜆 is a diagonal matrix where the eigenvalues are in descending 

order. The cumulated percentage from eigenvalue 1 to k is defined as 𝐶𝑃𝑘 = ∑ 𝜆𝑖
𝑘
𝑖=1 ∑ 𝜆𝑖

𝑝
𝑖=1⁄ . In 

engineering applications, it is acceptable to reduce the feature dimension with a CP value 

around [0.8, 0.9], while 0.8 is used in this paper. Then, the reduced 𝑘 × 𝑛 dimensional feature 

set Y can be given by Eq. (2) 

 

1: , T
kY X  (2) 

 

3.2 Acquiring Degradation Index through GMM Method 

 



Based on the new k dimensional feature set, the next step is to acquire the degradation index. 

For bearings, a gradual deterioration may happen due to ball wearing or inner impurity particles, 

which means that the extracted features should present the changing process. For instance, 

during the first m monitor intervals, the tested product is in health status. With the time goes on, 

the most recent m intervals should be in a partially degradation status. Following this idea, a 

GMM modeling method is introduced to obtain the degradation index through the measure of 

overlap rate [11, 22, 23]. 

Supposed that 𝐲 = [𝑦1, 𝑦2 , … , 𝑦𝑚] present one status with the 𝑚 columns of feature set Y. 

The probability density function (PDF) of 𝑦𝑞 , 𝑞 = 1,2, … , 𝑚, follows a mixture distribution with 

N Gaussian components that is  
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where, 𝜔𝑝 is the weight of the pth mixture and 𝑁𝑜𝑟𝑚(𝝁𝑝, 𝚺𝑝) is  
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Through the expectation maximization (EM) algorithm, the values of unknown parameters, 

i.e. 𝜔𝑝, 𝜇𝑝, Σ𝑝, will be obtained when the likelihood function value 𝐿(𝒚|𝝁, 𝚺) = ∏ 𝑓(𝑦𝑞)𝑚
𝑞=1  is 

converged or the number of iteration reaches the maximum 𝑖𝑚𝑎𝑥  [11, 24].  

 

Basic EM algorithm for the estimation of GMM model parameters 

(i) 𝑖 ← 0, initialize the unknown parameters for all Gaussian components, 𝜔𝑝(0), 𝜇𝑝(0), Σ𝑝(0) 

(ii) do 𝑖 ← 𝑖 + 1 

E step: compute the posterior probability of sample of 𝑦𝑞 in the pth component 
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M step: update 𝜔𝑝, 𝜇𝑝 and Σ𝑝 
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(6) 

(iii)  end if 𝑖 = 𝑖𝑚𝑎𝑥  𝑜𝑟 |(𝐿𝑖 − 𝐿(𝑖−1))/𝐿(𝑖−1)| < 𝜀 

 

Therefore, the GMM model for each m-interval (i.e. one health state) can be computed 

through abovementioned algorithm. The confidence value (CV) between the baseline model (i.e. 



normal state) 𝑓0 and the most recent hth model 𝑓ℎ can then be calculated by the overlap between 

two GMM models [11, 25].  

 

         
2 2

0 0 .h h hCV f y f y dy f y dy f y dy
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  
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If the hth state is still in normal, the CV value will be near 1. Otherwise, it will be near 0 if 

the hth state is barely normal which indicates the corresponding maintenance should be given to 

avoid the system failure. Hence, the CV results can be used as the degradation index for 

machinery product health assessment. 

 

4 Degradation Modeling and Acceleration Model 

 

Given the degradation index from the vibration data under different operating conditions, 

the assessment of reliability and lifetime for machinery products can be conducted after 

extrapolating q-TTFs based on the degradation index. In this paper, we consider the 

uncertainties from information loss when acquring features from raw vibration data, and CV 

calculation by Mahalanobis distance (M-D). The inherent uncertainties are not negligible since 

that they have influence on the credibility of the user‘s belief on the reliability and lifetime 

assessment results. Thus, the fuzzy regression method is used to model the degradation paths 

for CV results with fuzzy theory. Similiar applications are referred to [19, 20].  

In this section, the basic fuzzy arithmetic is at first introduced for fuzzy calculations. Then, 

the modeling process using fuzzy regression model is illustrated in order to obtain the fuzzy q-

TTFs at different operating conditions. After that, the acceleration model is identified to 

establish the relationship between failure times and operating conditions since the reliability 

prediction is conducted at normal operating condition. 

 

4.1 Basic Fuzzy Arithmetic 

 

Zadeh[26] introduced fuzzy set theory to solve the problem of uncertainty due to imprecise 

or vague through applying a membership function to data rather than crisp one. Membership 

functions, e.g. triangular, rectangular or trapezoidal, are widely used. Without loss of generality, 

triangular membership function is selected to simply the calculations. Let 𝑋̃ = tfn(𝑥̅, 𝑙, 𝑟) be a 

fuzzy number with triangular membership function, see Figure 3. Herein, 𝑥̅, 𝑙 and 𝑟 donate the 

center, left boundary and right boundary, respectively. The 𝜇𝑋̃(𝑥) ∈ [0,1]  presents the 

membership value of 𝑥 in 𝑋̃, i.e. 
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  (8) 

 

The realization of fuzzy numbers are always conducted with alpha-cuts, which decomposes 

the membership function at the vertical axis with membership value α (see Figure 3), i.e. 0 ≤
𝛼 ≤ 1. The alpha-cuts of 𝑋̃ is defined as 

 

        ,
X

X x x c d            (9) 

 

where, c(𝛼)  and d(𝛼)  are increasing and decreasing function of α with c(𝛼) ≤ d(𝛼)  [27]. 

When 𝛼 = 0, [c(0), d(0)] is called the support of fuzzy number 𝑋̃. 



Assuming two triangular numbers 𝐴̃  and 𝐵̃  with their alpha-cuts, namely 𝐴̃[𝛼] =
[𝑐1(𝛼), 𝑑1(𝛼)] and𝐵̃[𝛼] = [𝑐2(𝛼), 𝑑2(𝛼)], the operator can be calculated with basic interval 

arithmetic and alpha-cuts. The results of addition, subtraction, multiplication and division 

between two fuzzy numbers are 𝐶̃[𝛼] = 𝐴̃[𝛼] + 𝐵̃[𝛼], 𝐴̃[𝛼] − 𝐵̃[𝛼], 𝐴̃[𝛼] ∙ 𝐵̃[𝛼] and 𝐴̃[𝛼] 𝐵̃[𝛼]⁄ , 

respectively. Provided that zero does not belong to 𝐵̃[𝛼] for all α in division [20, 27]. Assuming 

a function is h: [𝑎, 𝑏] → ℛ, 𝑍 = ℎ(𝑋̃) is a fuzzy function and the membership function of 𝑍 can 

be calculated through Zadeh’s extension principle, i.e. 
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If ℎ is continuous, then the alpha-cuts for 𝑍, namely 𝑍[𝛼] = [𝑧1(𝛼), 𝑧2(𝛼)], are [28] 
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Fig. 3 Fuzzy number and its alpha-cuts 

 

4.2 Fuzzy Regression Method and q-TTFs 

 

For the analysis of imprecise degradation data, fuzzy regression method is a powerful tool to 

model the degradation path containing the epistemic uncertainty by means of fuzzy theory. 

There are two options when using this method to model the degradation path. The first one 

utilizes a membership function to each degradation data. Then, the regression method with 

fuzzy parameters is used to model the degradation path [19, 29]. The second one directly uses 

the regression method to model the degradation path and select the (1-α)100% confidence 

intervals of the parameters as their fuzzy estimators [20]. Taking the CV results in Section 2.1.2 

as an example, the data are imprecise because of the inherent uncertainties. Since no prior 

information is given to establish the membership function for CV results, the second method is 

selected in this paper. The basic regression model is defined as [20] 

 

   exp + ,y t a bt     (12) 

 

where, a and b are constant,  𝜀  is the error term which follows normal distribution. Taking 

logarithm at both sides, a linear relationship will be obtained as  log(𝑦) = log(𝑎) + 𝑏𝑡 . 

Therefore, the parameters can be estimated by least square method.  

Then, the (1-α)100% confidence interval for vector parameters are regarded as the fuzzy 

estimators 𝜃̃ for parameters 𝜃̂, which is [20] 
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  (13) 

 

where, 𝑛𝑐𝑣 is the number of CV results, 𝑝 is the number of unknown parameters  𝜃 = [𝑎, 𝑏], 
thus is equal to 2. For the sake of simplicity, the symmetric triangular membership function is 

selected for fuzzy parameters, i.e. 𝑙 = 𝑟 in Eq. 8, and their alpha-cuts are defined as 𝜃̃[𝛼] for 

all 𝛼ϵ[0,1]. 
Thus, the fuzzy regression model is 

 

   exp +y t a bt     (14) 

 

When the failure threshold C is available, the corresponding fuzzy failure time at each 

operating condition 𝑇̃[𝛼] = [(𝑡1|𝐶)(𝛼), (𝑡2|𝐶)(𝛼)] will be computed at each alpha-cut using 

interval arithmetic. 

 

4.3 Acceleration Model 

 

The machinery products are experienced with hasher than normal conditions. In order to 

evaluate the lifetime and reliability results at normal operating condition, the relationship 

between q-TTFs and accelerated conditions should be obtained through acceleration model. A 

linear model with a log transformation is used in this paper to find such relationship [30]. 

 

  2 2
0 1 2 3 4 5+1log T logS logL logS logL logS logL                (15) 

 

where, 𝜆𝑘 is the coefficient, k = 1,2,…,5, S and L donate speed and load for bearing operating 

conditions, T is the failure time. The optimal parameters for Eq. 15 can be obtained through 

least square method by fitlm function in Matlab. Similarly, the fuzzy acceleration model can be 

given to describe the relationship between the environmental variables, i.e. load, speed, and the 

fuzzy q-TTF 𝑇̃[𝛼] under each alpha-cut for all 𝛼ϵ[0,1]. 
Then, under each alpha-cut, the averaged fuzzy q-TTFs at both normal operating condition 

and the jth stress level, i.e. 𝑇̃̅0[𝛼] and 𝑇̃̅𝑗[𝛼], can be computed by substituting the corresponding 

speed and load into the optimal function. Therefore, the fuzzy acceleration factor (AF) is 

defined as 

 

     0j jA T T     (16) 

 

With the results from Eq. 16, fuzzy q-TTFs 𝑇̃[𝛼] can be extrapolated to normal operating 

condition 𝑇̃0[𝛼]. 
Besides the lifetime and reliability evaluation, another advantage of accelerated testing is 

that it can provide information about the stresses or their combinations which are sensitive to 

the failure of machinery products. Such information can provide reliable basis for reliability 

growth and design improvement for products. The following algorithm is proposed for such 

purpose through the analysis of fuzzy coefficients 𝜆̃𝑘[𝛼]. 
 

Analysis of sensitive stresses 

Set 𝑖𝑚𝑎𝑥 = 𝑀, which denotes the number of intervals for membership value in [0, 1]. 

(i) 𝑖 ← 0, compute the fuzzy coefficient at each alpha-cut 𝛼 ← 𝑖 𝑀⁄  

Substitute all fuzzy failure time 𝑇̃𝑗[𝛼] and its corresponding jth condition Sj and Lj 

𝑚𝑜𝑑𝑒𝑙 ← 𝑓𝑖𝑡𝑙𝑚(𝑇̃𝑗[𝛼],′ 𝑇~1 + 𝑆 + 𝐿 + 𝑆 ∗ 𝐿 + 𝑆2 + 𝐿2′); 



𝜆𝑘[𝛼] ← 𝑚𝑜𝑑𝑒𝑙. 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠. 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑘); 

𝑇̃̅0[𝛼] ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑚𝑜𝑑𝑒𝑙, [𝑆0, 𝐿0]); 

𝑇̃̅𝑗[𝛼] ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑚𝑜𝑑𝑒𝑙, [𝑆𝑗 , 𝐿𝑗]); 

Compute fuzzy acceleration factor through Eq. 16 

(ii) End if 𝑖 ← 𝑖𝑚𝑎𝑥 

(iii) Construct membership function for all fuzzy coefficient 𝜆̃𝑘[𝛼] and analyze the relationship 

between them, compute the main stress. 

 

5 Lifetime Distribtuion Selection and Fuzzy Reliability Analysis 

 

In this Section, a procedure of lifetime distribution selection is proposed for fuzzy q-TTFs 

under normal operating conditions. Then, the fuzzy reliability analysis is conducted with the 

most appropriate distribution to compute indexes that of interest, e.g. reliability, MTTF, ets. 

 

5.1 Lifetime Distribution for q-TTFs 

 

In order to select the lifetime distribution under fuzzy q-TTFs, Anderson–Darling test [31] is 

used to test the goodness of fit of the candidate distribution to the obtained q-TTFs at each 

alpha-cut. The following procedure is proposed to rank the candidate distributions which are 

normal, exponential, extreme value, Log-normal and Weibull distributions. 

 

(i) Set 𝑖𝑚𝑎𝑥 = 𝑀, ℎ𝑗 = 0 which denotes the total score of the jth distribution at all alpha-cuts in 

[0, 1], and the significance level (default is 5%) 

(ii) 𝑖 ← 0, compute the fuzzy coefficient at each alpha-cut 𝛼 ← 𝑖 𝑀⁄  

Calculate the score whether A-D test reject the null hypothesis that failure times 𝑇̃0[𝛼] are 

from the jth distribution.  

ℎ ← 𝑎𝑑𝑡𝑒𝑠𝑡(𝑇̃0[𝛼],′ 𝑗𝑡ℎ  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛′); 

If yes, ℎ = 0, ℎ𝑗 = ℎ𝑗 + ℎ; else ℎ = 1, ℎ𝑗 = ℎ𝑗 + 1. 
(iii) End if 𝑖 ← 𝑖𝑚𝑎𝑥 

(iv) Rank the ℎ𝑗  in an ascending order and select the lowest (or the first) one as the most 

appropriate lifetime distribution. 

 

For some specific applications, like bearings, studies have shown that the failure times 

follow Weibull distribution [32] which can be directly used for fuzzy reliability analysis. 

 

       
1

exp -f t t t
 

    
   

 
   

(17) 

 

where,  is scale parameter, and  is shape parameter. In classical reliability engineering,  >1 

means that the product experiences a wear-out phase from the perspective of the bathtub curve. 

For fuzzy q-TTFs, the fuzzy parameters, i.e. 𝜂̃[𝛼] and  𝛽[𝛼], are estimated through lifetime 

distribution fitting for 𝑇̃0[𝛼] at each alpha-cut. 

 

5.2 Fuzzy Reliability Analysis 

 

The selected lifetime distribution 𝑓(∙) can then be used for reliability prediction. The fuzzy 

reliability at time interval [t1, t2] is defined as (Weibull distribution as an example) 

 

        
 

  
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1

1 2 2 1, 1 1 exp - exp -
t

t
R t t f t dt t t

   
             

         (18) 

 



Other reliability indexes, e.g. Mean Time to Failure (MTTF) or hazard function, can 

compute through substituting fuzzy parameters into classical analytical results at each alpha-cut.  

 

         1+1M t f t dt            (19) 

 

Furthermore, if other lifetime distribution is satisfied, e.g. Log-normal distribution, Eq. 18 

and 19 can be rewritten accordingly. 

 

6 Case Study 

 

In this section, an industrial application is used to illustrate the feasibility of the proposed 

method. 

 

6.1 Experiment Platform 

 

The analyzed data is from IEEE PHM 2012 data challenge and the bearing experiment 

platform PRONOSTA is shown in Figure 4, which is consist of three parts: the rotating, 

degradation generation and measurement parts [17]. The sampling frequencies are 25.6 kHz for 

the embedded acceleration measures and 10 Hz for temperature ones. The platform can perform 

bearing accelerated degradation testing, while monitoring vibration and temperature signals for 

fault diagnosis and remaining useful life (RUL) prediction.  

 

 
Fig. 4. The bearing experiment platform [17] 

 
Table 1. Datasets of the bearing accelerated testing 

Datasets 
Operating Conditions 

Condition 1 Condition 2 Condition 3 

Learning set 
No. 1_1 No. 2_1 No. 3_1 

No. 1_2 No. 2_2 No. 3_2 

Testing set 
No. 1_3 No. 2_3 

No. 3_3 to to 

No. 1_7 No. 2_7 

 

The tested 17 bearings are experienced three operating conditions with different rotating 

speed and load, i.e. 𝑆 = 1800 𝑟𝑝𝑚&𝐿 = 4000𝑁 (Condition 1), 𝑆 = 1650 𝑟𝑝𝑚&𝐿 = 4200𝑁 

(Condition 2) and 𝑆 = 1500 𝑟𝑝𝑚&𝐿 = 5000𝑁 (Condition 3) and the bearing failure happens 

when the accelerometer exceeds 20g. Table 1 gives the details about the tested bearings which 

are divided into two sets for training and testing (algorithms or models). Due to the inner non-

linear property for bearing features, it is quite difficult to accurately estimate the RULs [17, 33]. 

Hence, the proposed framework is used to conduct bearing reliability analysis with accelerated 



data. Since the bearing reliability is an index for the population but not individual, the bearings 

whose lifetimes are significant lower or higher than others are omitted, i.e. 1_2, 1_4, 2_1, 2_7. 

In addition, the vibration signals from vertical axis is selected since it has been verified to be 

better reflect the health state [34]. 

 

6.2 Degradation Modeling and Fuzzy q-TTFs 

 

According to the procedure in Section 2, the original signal is at first de-noised by the 

wavelet method at level 4 using the principle of Stein’s unbiased risk with soft-thresholding 

[35]. Then, the p = 25 features in four domains are extracted and then reduced through PCA 

method where CP = 0.8. After that, the degradation index CV can be obtained using GMM 

method in Section 3.2. Herein, the choice for the number of features as one state needs more 

attention, especially for the baseline normal state. We used different combination of m values in 

three operating conditions and compared their CV results with the announced bearing failure in 

the learning set, where the acceleration level exceeds 20g. Thus, m = 1100, 300 and 250 are 

selected as one health state for three conditions. In addition, the new failure threshold for the 

degradation index is set to 0.2, i.e. C=0.2. The GMM results are shown in Figure 5. 

 

 
Fig. 5. The degradation processes for bearings under three accelerated levels with their fitted paths 

 

Then, the non-linear degradation model given in Eq. 12 is used to model the path of CV 

results at each operating condition. The statistical results for model parameters are given in 

Table 2, where Anderson-Darling test is used to check the normal assumption of the error term. 

Hence, the degradation paths for bearings No. 1_3, 2_3, 2_5 and 3_2 are not compromised with 

the normal assumption although the R2 and 𝑅𝑎𝑑𝑗
2  suggest good fitting. As seen from Figure 5, 

the bearing 1_3 experienced a sudden decrease and it will fail soon which is not accordance 

with others in operating condition 1. Thus, the bearing 1_3 is omitted for the following analysis. 

In terms of bearings No. 2_3, 2_5 and 3_2, the CV values are already lower than the failure 

threshold 0.2 around 2(h). Considered that the tails of the degradation paths present a state that 

is much deviate from the normal state. The CV results are ignored from time 1.5, 2 and 2.111(h) 

from the three bearings. As to bearing 2_2, it seems to perform better after 1.5833(h) which, 

however, has already exceeded the threshold. Thus, the CV values after 1.5833(h) are ignored 

for bearing 2_2. The new results for this four bearings are given in Table 2 by adding a bracket, 

e.g. [2_3]. 

The fuzzy parameters of the regression model are constructed as illustrated in Section 4.2. 

The 95% confidence values are shown at the right of Table 2. For simplicity, the symmetrical 

triangle membership function is selected to present the belief of certain parameter through the 

membership values. Thus, the fuzzy q-TTFs can be computed by substituting fuzzy parameters, 



i.e. 𝑎̃[𝛼] and 𝑏̃[𝛼], and the failure threshold C=0.2 into Eq. 14 at each alpha-cut, which are 

interval values as 𝑇̃[𝛼] = [(𝑡1|𝐶)(𝛼), (𝑡2|𝐶)(𝛼)]. The results are given at the left side of Table 

3. 

 
Table 2. Fuzzy results for degradation model parameters 

Bearing No. 
a b R2 

(%) 

𝑅𝑎𝑑𝑗
2  

(%) 

AD (Error) Fuzzy Estimation 

E SE E SE p stat a b 

1_1 3.389 0.189 -0.367 0.013 95.4 95.3 0.070 0.68 3.031 3.788 -0.393 -0.342 

1_3 3.461 0.433 -0.377 0.033 87.2 86.6 0.011 0.98 2.670 4.486 -0.452 -0.315 

1_5 3.646 0.244 -0.402 0.016 95.2 95.1 0.051 0.74 3.185 4.175 -0.436 -0.370 

1_6 2.376 0.057 -0.264 0.006 98.5 98.4 0.189 0.51 2.264 2.494 -0.276 -0.253 

1_7 2.648 0.225 -0.312 0.024 93.5 93.0 0.423 0.35 2.200 3.187 -0.369 -0.264 

2_2 3.314 0.922 -1.483 0.243 73.3 71.5 0.598 0.29 1.832 5.997 -2.102 -1.046 

[2_2] 6.421 1.521 -2.143 0.232 93.8 93.0 0.494 0.32 3.719 11.09 -2.752 -1.669 

2_3 8.164 1.833 -2.278 0.217 91.8 91.5 0.003 1.20 5.157 12.92 -2.767 -1.876 

[2_3] 3.625 1.109 -1.668 0.337 82.3 79.8 0.457 0.33 1.759 7.471 -2.691 -1.035 

2_4 3.046 0.483 -1.217 0.142 90.9 89.9 0.685 0.26 2.128 4.360 -1.584 -0.935 

2_5 2.796 0.311 -1.176 0.086 86.7 86.5 8e-04 1.46 2.237 3.495 -1.363 -1.015 

[2_5] 2.753 0.307 -1.319 0.109 94.0 93.5 0.062 0.68 2.163 3.505 -1.576 -1.104 

2_6 4.309 0.742 -1.629 0.162 94.1 93.4 0.874 0.20 2.897 6.410 -2.049 -1.294 

3_1 2.200 0.251 -1.054 0.120 92.6 91.5 0.256 0.43 1.679 2.882 -1.378 -0.806 

3_2 1.862 0.134 -0.995 0.057 91.8 91.6 0.010 1.01 1.611 2.152 -1.117 -0.886 

[3_2] 2.436 0.073 -1.258 0.028 99.4 99.4 0.558 0.31 2.286 2.595 -1.319 -1.200 

3_3 1.555 0.108 -0.659 0.086 96.8 95.2 0.152 0.43 1.153 2.098 -1.152 -0.377 

 

6.3 Acceleration Model and Analysis of Sensitive Stresses 

 

After obtaining the fuzzy q-TTFs under three operating conditions, Eq. 15-16 in Section 4.3 

can then compute the fuzzy acceleration factors (see Figure 6) with their fuzzy coefficients, and 

convert the failure times into normal stress levels. Assumed that the normal condition is 

3000(rpm) in Speed and 1200(N) in load, the results are given at the right side of Table 3. 

 

 
Fig. 6 Fuzzy Acceleration Factors for Three Accelerated Operating Conditions 

 

From Figure 6, it can conclude that the support of fuzzy acceleration factors under three 

acceleration operating conditions are [1.53, 2.56], [4.96, 14.90] and [3.95, 11.12], while the 

peak values are 2.44, 10.57 and 8.58, respectively. Intuitively, both condition 2 & 3 are harsher 

than condition 1 with larger values of acceleration factor under each alpha-cut for all 𝛼ϵ[0,1]. 
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And condition 2 is severer than condition 3 when the belief of the results α > 0.8, otherwise 

their difference are undistinguishable. Furthermore, the fuzzy coefficients of the acceleration 

model can be used to analyze the sensitivity of speed and load to the lifetimes of bearings 

through the procedure in Section 4.3. The results show that 𝜆0, 𝜆1 and 𝜆3 are zero for all 𝛼ϵ[0,1] 
which means that no contribution to the failure of bearings has been obtained for the single 

stress of speed and the interactive stress of speed and load. Thus, the sensitive stresses are load, 

self-correlation of speed and load, which are related to coefficient 𝜆2, 𝜆4 and 𝜆5, see Figure 7. 

The results can help understand the hazard rating for each stress or their combination to the 

failure of bearings, and improve the design or operating conditions to increase the lifespan of 

bearings. 

 

 
Fig. 7 Fuzzy Coefficients in Acceleration Models 

 
Table 3. Fuzzy q-TTFs under accelerated and normal conditions 

Bearing No. 
Fuzzy q-TTFs Operating Conditions 

Fuzzy q-TTFs in Normal Condition 

(3000rpm, 1200N) 

T1 (h) T2 (h) Speed (rpm) Load (N) T1 (h) T2 (h) 

1_1 6.9177 8.6064 

1800 4000 

10.6271  22.0470  

1_5 6.3450 8.2060 9.7474  21.0214  

1_6 8.8065 9.9668 13.5288  25.5319  

1_7 6.5015 10.496 9.9878  26.8877  

2_2 1.0621 2.4053 

1650 4200 

5.2697  35.8368  

2_3 0.8079 3.4998 4.0082  52.1441  

2_4 1.4923 3.2946 7.4040  49.0869  

2_5 1.5105 2.5948 7.4940  38.6610  

2_6 1.3044 2.6794 6.4715  39.9207  

3_1 1.5441 3.3117 

1500 5000 

6.0995  36.8122  

3_2 1.8473 2.1364 7.2975  23.7476  

3_3 1.5210 6.2316 6.0083  69.2690  

 

6.4 Lifetime Distribution Selection and Fuzzy Reliability Analysis for Bearings 

 

Once the fuzzy q-TTFs are given, the selection of lifetime distribution is essential for 

reliability analysis. In this case, the procedure of distribution selection proposed in Section 5.1 

is used to compute the score of each candidate distribution for fuzzy q-TTFs 𝑇̃0[𝛼] at both sides. 

The membership value is equally divided into 10 intervals, which means that M=10 and the 

maximum score will be ℎ𝑚𝑎𝑥 = 2𝑀 + 1 = 21. Figure 8 presents the results and indicates that 

normal, Log-normal and Weibull distributions are appropriate for describing bearing lifetime 

data, while exponential distribution is not suitable at all and extreme value distribution seems 



well with only one score. Although it has been demonstrated that the failure times for bearing 

follows Weibull distribution [32], the normal and Log-normal distributions also perform well in 

this study. The reason may be from the small sample (12 bearing lifetime data), which leads to 

the similar shape that those three distributions can describe. Thus, special attention should be 

given for other applications if there have no such prior knowledge. For bearings, the Weibull 

distribution is used for computing fuzzy reliability and MTTF. 

 
Fig. 8 The score of each distribution for bearing failure times 

 

The fuzzy parameter for Weibull distribution is calculated at each alpha-cut, see Figure 9. 

For all 𝛼ϵ[0,1], 𝛽[𝛼] is greater than 1 which means that the bearing experienced a wear-out 

phase. Interested that with different belief of the results, the fuzzy value 𝛽[𝛼] varied from [2.80, 

3.25] to the peaking 9.30. That is to say, with different belief, the recognition on the severity of 

bearing deterioration is significantly different. While in traditional analysis, only one crisp 

value can be obtained and such phenomenon cannot be identified. 

 

 
Fig. 9 Fuzzy parameters for the Weibull lifetime distribution 

 

As describled in the challenge details [17], the lifetimes for the majority of the bearings are 

from 1 to 7(h). It may be interesting to analyze the reliability of this kind of bearing during the 

next hour in normal operating condition. Thus, the time interval [7, 8](h) is substituted to Eq. 18 

with fuzzy Weibull parameters. Figure 10 shows the results, where the reliability resluts is in 

[0.8573, 0.9969] and have the peak value at 0.9999. The results demonstrate that the bearings 

have a higher probability that is safty enough for operating under normal operating condition.  

For users, the maintenace time is that of interest for making schedule to aviod the occurance 

of failure and reduce their related costs. Hence, the fuzzy MTTF values is then computed using 

Eq. 19, see Figure 11. The MTTF goes from 7.83 to 36.82(h) and have the highest peak at 
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19.83(h). In this case, it has the lowest probability that maintenace schedule should be given 

before 7.83(h), while the highest at 19.83(h). Compared with traditional crisp value, the related 

risk can be directly expressed by fuzzy MTTF. For instance, if the traditional value is at the left 

side of fuzzy MTTF, the schedule will be consevative. Otherwise, it will be radical.  

 

 
Fig. 10. Fuzzy reliability for bearings at time interval [7,8](h) 

 

 
Fig. 11 Fuzzy MTTF for bearings 

 

7 Verification and Discussion 

 

For the proposed framework, it may be interesting to verify its effectiveness through actual 

failure time data from two aspects. On the one hand, the comparision between fuzzy q-TTFs 

obtained from the regression method and the actual ones (see Table 4) is to verify that the 

extracted degrdation index, i.e. CV results, can be used for lifetime prediction. On the second 

hand, the comparision between reliability and MTTF results from the proposed method and that 

from the acutal data will further verify that the proposed can well handle the risk of the 

reliability prediction results. 

All the tested 17 bearings were ran to failure, which can be found in http://www.femto-

st.fr/ieee-PHM2012-data-challenge. The actual failure times are summarized at the left of  

Table 4. Among that, 12 bearings are selected for reliability analysis and the fuzzy q-TTFs are 

given in Table 3. Through comparision, it can conclude that the failure times of 5 bearings are 

in the intervals of fuzzy results, i.e. 1_1, 1_5, 2_2, 2_4 and 2.6, while 4 bearings are slightly 

overestimated, i.e. 1_6, 1_7, 3_1 and 3_2, the 3 rest bearings are underestimated. Thus, the 

proposed method perform well on lifetime prediction for bearings using the degradation index 

obtained from GMM method. 

Now, before conducting reliability analysis, it is necessary to identify the acceleration model. 

Herein, Eq. (15) is used and the result is  

  2 2+1 -10.772 0.5713 0.8591log T logL logS logL      . 

http://www.femto-st.fr/ieee-PHM2012-data-challenge
http://www.femto-st.fr/ieee-PHM2012-data-challenge


Thus, the main sensitive stresses are load, self-correlation of speed and load, which are in 

good agreement with the results from the proposed method in Section 6.3. In addition, the 

acceleration factors for the three accelerated operating conditions are 4.71, 8.31 and 9.70. As 

seen from Figure 6, the fuzzy results well capture Condition 2 & 3, while underestimate the 

Condition 1. Considered that the complexity of the interaction among the associated 

uncertainties, the results are acceptable. The extrapolated TTFs under normal operating 

condition are listed at the right side of Table 4. Anderson–Darling test shows that the Weibull 

distribution is a suitable lifetime distribution.  

In the next step, we compare the reliability and MTTF results. The scale and shape values 

for Weibull distribution are 28.93 and 2.04. Substituting them into Eq. 18, the reliability for the 

bearings at [7, 8](h) is 0.9837. it is obvious that the fuzzy result from the proposed method can 

well present the value, see Figure 10. Moreover, the proposed method can tell that the reliability 

is more than 0.8573 even in the worst-case. Similarly for MTTF, the result is 25.63(h) which is 

well presented by the proposed method in Figure 11. 

From above analysis, it concludes that the proposed framework can provide reliable 

reliability and MTTF results for bearings and consider the uncertainties with related risk in 

accelerated data. The proposed method can be applied to other machinery applications. 

 
Table 4 Actual TTFs for all bearings at accelerated and normal operating conditions 

Bearing No. 

TTFs 

(Accelerated 

Condition) 

T (h) 

Operating 

Conditions 

TTFs 

(3000rpm, 

1200N) 

T (h) 
Speed 

(rpm) 

Load 

(N) 

1_1 7.7833  

1800 4000 

36.6260  

1_2 2.4167  11.3721  

1_3 6.5944  31.0315  

1_4 3.2553  15.3184  

1_5 6.8389  32.1817  

1_6 6.7969  31.9844  

1_7 6.2725  29.5165  

2_1 2.5278  

1650 4200 

21.0158  

2_2 2.2111  18.3831  

2_3 5.4278  45.1263  

2_4 2.0833  17.3207  

2_5 6.4167  53.3479  

2_6 1.9444  16.1660  

2_7 0.6361  5.2886  

3_1 1.4278  

1500 5000 

13.8529  

3_2 4.5444  44.0921  

3_3 1.2028  11.6699  

 

8 Conclusions 

 

This study has focused on the fuzzy reliability analysis of machinery accelerated testing data. 

A framework has been proposed which consist of three aspects: degradation index acquisition, 

degradation modeling and fuzzy reliability analysis. The proposed framework can compute 

reliable reliability and MTTF results for maintenance decision-making. 

The GMM method can use a mixture of gaussian distributions to capture one status of 

machinary product by extracting features from raw vibration signals. This method can derive a 

health status even though the signals are dynamic and non-stationary. A linear model is used to 

identify the relationship between environmental variables and TTFs. For the case study, it has 

confirmed that the main sensitive stresses of bearing failure are load, self-correlation of speed 

and load. During the comparison with real failure data, the proposed method can capture the 

real values well. Meanwhile, the fuzzy results of reliability and MTTF verified the advantages 

of the proposed method to understand the potential risk of the acceptance of the results. 
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