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ABSTRACT:  Accelerated Degradation Testing (ADT) is an efficient technique for lifetime evaluation 
of high reliable products whose inner deterioration can be traced by an outer performance characteristic 
with time. With great physical and stochastic properties, the linear Wiener process or its time transfor-
mation is widely used for acquiring lifetime information from the ADT data. However, this method is 
not applicable for the situation where the degradation path cannot be linearized. Thus, in this work, we 
address the issue of nonlinear ADT analysis through the general Wiener process, which can deal with not 
only the nonlinear degradation paths that cannot be linearized, but also the linear ones as its limiting 
cases. The Akaike Information Criterion (AIC) is introduced to compare the models. The LED case study 
demonstrates the effectiveness of the general Wiener process model over the common used time-scale 
transformation Wiener process model on nonlinear ADT analysis.

as the degradation models. Ho (2012) utilized the 
linear Wiener process model for ADT analysis, 
which is to describe the influence of product mate-
rial and random effects from the environment. In 
real applications, Wang et al. (2013) proposed an 
integrated Bayesian reliability evaluation method 
with both ADT and field information for super 
luminescent diode, where a linear Wiener process 
is used as the degradation model.

From above research, it is known that the linear 
Wiener process is commonly used in ADT analysis. 
However, there exists nonlinear degradation proc-
esses due to the inner response of product per-
formance for outer environmental conditions. It is 
improper to model the nonlinear degradation path 
with linear Wiener process model. Hence, an alter-
native way is to give a time-scale transformation.

Whitmore & Schenkelberg (1997) is the first to 
realize this idea with the time-scale transformation 
t exp r= − −1 ( )λ γ  and t r= λ  in linear Wiener proc-
ess model for nonlinear ADT analysis. In recent 
work, Tang et al. (2014) used a time-scale trans-
formation by replacing the t  in linear Wiener proc-
ess to Λ( )t  to solve the problem of nonlinear ADT 
analysis.

The problem of time-scale transformation is that 
there exists a underlying assumption which the lin-
ear degradation path can be linearized. However, it 
is not true for all nonlinear degradation scenarios. 
In traditional degradation modeling, Wang et al. 
(2014) proposed a general Wiener process model 
which can used for both linear and nonlinear 

1  INTRODUCTION

For the lifetime and reliability evaluation of high 
reliable products, Accelerated Degradation Testing 
(ADT) is widely used to accomplish such task with 
hasher than normal test conditions (Meeker et al. 
1998). During the past decades, ADT has been 
applied into many application, e.g. battery (Jung 
et al. 2014), rubber component (Woo et al. 2010), 
light bars (Wang and Chu 2012), etc. In general, 
the analysis of ADT data is to model the degra-
dation path and derive the failure time when the 
degradation paths exceed the failure threshold, 
then extrapolate the failure time at high stress con-
ditions to normal condition. The stochastic proc-
esses are the commonly used methods for ADT 
modeling which have excellent physical properties 
and mathematical attraction, like Wiener process, 
Gamma process and inverse-Gaussian process (Ye 
and Xie 2015). Due to the form of normal distribu-
tion, the linear Wiener process is the most prefer-
able model in ADT field.

Li & Jiang (2009) studied the optimum plan 
design of constant stress ADT (SSADT) with 
competing failure modes through a linear Winer 
process model. While, Lim & Yum (2011) used the 
linear Wiener process as the degradation model to 
study the optimal design of Constant Stress ADT 
(CSADT) plan. Pan & Balakrishnan (2010) con-
sidered the situation when the time-point of elevat-
ing stress levels is random variable in SSADT, and 
selected the linear Wiener and Gamma processes 
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degradation modeling with different combinations 
of Λ( )t;θ  and τ γ( )t, . Thus, in this paper, the gen-
eral Wiener process is introduced to solve the prob-
lem of nonlinear ADT analysis.

2  ACCELERATED DEGRADATION  
AND ACCELERATION MODEL

2.1  Motivation example

The CSADT data for the LEDs under two stress 
conditions is shown in Figure  1. Obviously, the 
degradation of this kind of product experiences 
a nonlinear path. For more details about the test 
data, readers are referred to Chaluvadi (2008). In 
the research of Tang et al. (2014), the dataset is 
analyzed based on the time-scale transformation 
Wiener process model, i.e.

M X t t B t1 : = + ,( ) ( ) ( ( ))µ σΛ Λ 	 (1)

where X t( ) is a degradation value at time t; whereas 
µ  and σ  are draft and diffusion coefficients; Λ( )t  
is the time-scale transformation which can describe 
the nonlinear property of the degradation process.

The results from Tang et al. (2014) indicates that 
the unit-to-unit variation has little effect on the 
estimation of  the Mean Time To Failure (MTTF) 
that of  interest. Thus, the random effect is not 
considered in this paper for simplicity. In addition, 
the 95% confidence interval of  the MTTF at the 
normal stress under 25 mA is [1848, 57202] hours. 
However, the estimate of  the MTTF from the 
original paper is about 1346 hours, which means 
that the time-scale transformation model leads to 
the significantly overestimated lifetime evaluation 
results. Hence, a general model will be used and 

compared with it to illustrate their insights on 
ADT analysis.

2.2  Models

The general Wiener process for degradation mod-
eling is

M X t t B t0: = ; + ; ,( ) ( ) ( ( ))µ θ σ τ γΛ 	 (2)

where θ  and γ  are the generalized parameters. 
Clearly, Equation  (1) is a limiting case of Equa-
tion  (2) when Λ Λ( ) ( ) ( )t t t; = ; =θ τ γ . For clarity, 
Equation  (2) is named model M0, while Equa-
tion (1) is model M1.

In order to extrapolate the lifetime and reliabil-
ity evaluation results from high stress conditions 
to normal condition, acceleration model is needed. 
Specifically, we assume that the drift coefficient 
µ  follows an inverse power relationship with the 
accelerated stress, current I  in the LED case, i.e.

µ η η= ,0
1I 	 (3)

where η0 and η1 are constant numbers.
The lifetime and reliability evaluation can be 

obtained when the degradation path X t( ) firstly 
exceeds the failure threshold ω , i.e. the First 
Passage Time (FPT). According to the property of 
linear Wiener process, the Probability Distribution 
Function (PDF) of FPT follows an inverse 
Gaussian distribution (Chhikara 1988), i.e.
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Hence, for the time-scale transformation model 
M1, the PDF of FPT can be easily computed 
through Equation (4).
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However, the analytical formula of PDF of FPT 
for model M0 cannot be directly obtained from 
above-mentioned equations. The following section 
will address this issue.

2.3  Derivation of failure time distribution

Let a time transformation is s t= ;τ γ( ), thus 
t s= ;−τ γ1( ). We define Λ Λ( ) ( ( ) )t s; = ; ; =−θ τ γ θ1  
r(s;θ). So, Equation (2) becomes (Wang et al. 2014)

X s s B s( ) ( ) ( )= ; + ,µρ θ σ 	 (6)
Figure  1.  Nonlinear degradation data of 24 LEDs in 
two stress conditions.
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and its drift coefficient is

κ θ µ ρ θ( ) ( )s d s
ds

; = ; , 	 (7)

Under some mild assumptions, the PDF of 
FPT for the new degradation process X s( ) is (see 
Therem 2 in Si et al. (2012))
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Hence, the PDF of FPT for model M0 can be 
given by substituting s t= ;τ γ( ), that is
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Herein, the ∫p0 (u)du = 1 should be satisfied. 
Thus, Equation (9) is modified as

f t p t p u du0 0 0 0( ) ( ) ( )≅ ,
+∞
∫ 	 (10)

and the Cumulative Distribution Function (CDF) 
of FPT for model M0 is

F t p u du p u du
t

0 0 0 0 0( ) ( ) ( )≅ ,∫ ∫
+∞

	 (11)

Supposed that Λ( )t t; =θ θ  and τ γ γ( )t t; = , then 
Equation (10) is

f t
t

t t

t
t0 2

2

2
2 2

( ) ( ( ) ) exp=
− −

−
−( )







 ,

ωγ γ θ µ

πσ

ω µ
σ

θ

γ

θ

γ 	 (12)

When θ γ= =1, Equation  (12) is a inverse 
Gaussian distribution as in Equation  (4). When 
Λ( ) ( )t t; = ;θ τ γ , Equation (12) is a inverse Gaussian 
distribution with time-scale transformation as in 
Equation  (5). Thus, Equation  (10) is the general-
ized PDF of FPT which can cover existing linear 
and time-scale transformation Wiener process 
model as its limiting cases.

3  PARAMETER ESTIMATION

In this section we briefly provide a two stage Maxi-
mum Likelihood Estimation (MLE) for unknown 

parameters in CSADT. The unknown parameters 
are Θ = , , , ,{ }θ γ σ η η0 1 .

Let Xijk is the kth degradation value of unit j  at 
the stress level i  and tijk is the corresponding measure-
ment time, i K j n k mi ij= , , , ; = , , , ; = , , ,1 2 1 2 1 2… … … . 
Let Xij ij ij ijmX X X

ij
= , , , ′( )1 2 …  and tij ijt= ; ,( ( )Λ 1 θ  

Λ Λ( ) ( )) .t tij ijmij2; , , ; ′θ θ…  According to the proper-
ties of Wiener process, Xij  follows a multivariate 
normal distribution
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 The likelihood 
function of the CSADT data can be easily obtained 
and the logarithm function is
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Taking the first partial derivative of Equation 
(14) to µij  and σ 2 and set them equal to zero. Then, 
the estimation of ˆ ijµ  and 2σ̂  relied on θ  and γ  are
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Substituting Equation (15) and (16) to (14), the 
log-likelihood function is only a function of θ  and 
γ , i.e.
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Thus, θ̂  and γ̂  can be obtained by the two-
dimensional search for the maximum value of 
Equation (17) (Lagarias et al. 1998). Then, the 
estimation of ˆ ijµ  and 2σ̂  can be easily computed by 
substituting θ̂  and γ̂  to Equation (15) and (16).

Given the ˆ ijµ s and the corresponding acceler-
ated stress I , the values of 0η̂  and 1η̂  can be easily 
computed with Equation (3) by the MLE method.

4  CASE STUDY

In this section, the LED case is used to illustrate 
the proposed method in nonlinear ADT analysis, 
see Figure 1. In order to compare the model M0 
with the time-scale transformation model M1 as 
used in Tang et al. (2014), the Akaike information 
criterion (AIC) is selected

AIC l pmax= − + ,2 2 	 (18)

where lmax is the maximum value of the log-
likelihood function in Equation (14); p is the number 
of unknown parameters, p = 5 in the LED case.

For convenience, the formulas that Λ( )t t; =θ θ  
and τ γ γ( )t t; =  are used in this paper. The esti-
mates of unknown parameters for model M0 and 
M1 are given in Table 1.

As seen from Table 1, model M0 fits better than 
model M1 with a larger lmax and lower AIC values. 
Figure  2 also indicates that M0 performs better 
than M1 when fitting the LED data at two stress 
levels. For the estimates of parameters in degrada-
tion model, θ  is slightly different with 0 4415.  in M0 
and 0 4503.  in M1, which means that both of the two 
models claim the similar degradation path for the 
LED case because the expectation is E X t t[ ( )] .= µ θ

On the contrary, the values of γ  and σ 2 is quite 
different from each other. In model M1, the param-
eter γ  is set to be equal with θ . Hence, its σ 2 is 
smaller than that in model M0 since that its γ  value 
is larger than model M0, i.e. 0 4503 0 1172. > . , which 
means this two models provide different results of 
the variance of the degradation process in LED 
case (Var X t t( ( )) =σ γ2 ). In general, it may prefer 
to choose the case with lower σ 2 and its PDF of 
FPT will be shaper. However, in this application, 
model M0 is applicable since it can better describe 

the ADT data. It is to say that model M1 underes-
timates the noise level of the degradation process, 
which then effects the estimates of the parameters 
in acceleration model. Both η0 and η1 are signifi-
cantly different in two models. Furthermore, the 
lifetime evaluation results will be quite different.

As discussed before, the 95% confidence inter-
val of the MTTF at the normal stress under 25 mA 
is [1848, 57202] hours for model M1 (Tang et al. 
2014), while the result from the original paper is 
about 1346  hours (Chaluvadi 2008). We call this 
situation “the trap of extrapolation”.

The PDFs and CDFs of FPT for model M0 and 
M1 at normal stress are shown in Figures 3 and 4. 
The 95% confidence intervals of MTTF are [232, 
2622] and [1914, 53629] hours, while the mean val-
ues are 1100 and 12941 hours, respectively. Hence, 
model M0 with its generalized formula can provide 
more reliable lifetime evaluation results than M1 
after the extrapolation from higher stress condi-
tions to normal condition.

†The trap of extrapolation
In order to analyze the trap of extrapolation, we 
compare the estimated drift coefficients for two 
models since they are related to the stress conditions 
and used for extrapolation. The results are shown in 
Figure 5. The median values of the drift coefficients at 
two accelerated stress conditions are 3 0768 3 4834. / .  
and 2 3090 3 4946. / .  for model M0 and M1, respec-
tively. In addition, the estimated acceleration models 
are µ = . .0 2284 0 7257I  and µ = . × − .1 8038 10 5 3 2968I . 
Thus, the extrapolated drift coefficients at 25 mA, 
i.e. µ0 , are 2 3616.  and 0 7327.  accordingly.

Obviously, the time-scale transformation model 
M1 has a significantly lower value of µ0  than 
model M0, thus to compute a quite optimistic life-
time evaluation result which will give false confi-
dence to the producers on this products. If  such 
products are released to the market, the following 
unexpected maintenance may lead to severe conse-
quence. For the LED case, the improper linearliza-
tion of the ADT data by model M1 cannot be used 
for further lifetime and reliability evaluation. It is 
interesting to unearth the true meaning of ADT 
analysis since that different modeling methods may 
lead to significantly different results. In the work 
of Meeker and Escobar (1998), this problem is 
classified into the PITFALL 3 of the accelerated 

Table 1.  Unknown parameters for M0 and M1 in LED case.

Models

Degradation model Acceleration model

θ γ σ2 η0 η1 lmax AIC

M0 0.4415 0.1172 73.7836 0.2284 0.7257 -310.3884 630.7768
M1 0.4503 0.4503   5.8400 1.8038e-05 3.2968 -316.9837 641.9673
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testing: “Multiple time-scales and multiple factors 
affecting degradation”. Hence, the assessments 
results should be accepted with caution after com-
prehensively analyzing the nonlinear ADT data, 
especially to the extrapolation from high stress 
conditions to normal condition.

One feasible way to avoid this problem may be to 
increase the number of stress conditions in ADT. 
With data in multiple stress conditions rather than 
two in the LED case, the estimation error of the 
parameters in acceleration model will be decreased, 
the same to the estimation of µ0 .

5  CONCLUSIONS

In this work, a general Wiener process is introduced 
to analyze the nonlinear accelerated degradation 
data. The proposed method can cover the common 
used linear and time-scale transformation Wiener 
processes as its limiting cases. The LED case shows 
that this method fits better than time-scale trans-
formation model and can provide reliable lifetime 
estimation results. Meanwhile, it can avoid the tap 
of extrapolation.

However, more applications are needed to ver-
ify the effectiveness of this method on nonlinear 
ADT analysis. Further research may be given to: 
the unit-to-unit variation (see Fig. 5), the multiple 
accelerated variables, the nonlinear SSADT data 
and the optimum plan design.
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