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Abstract 

The subsurface crack propagation is one of the major interests for gear system research. The 

subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which 

can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this 

paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the 

high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress 

intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is 

selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA 

model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic 

model with the subsurface crack is built through dividing the gears into several small elements. The 

calculation of the total cycles of the elements is proposed based on the time-varying accumulated 

plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During 

this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, 

different sizes of the elements around the subsurface crack are compared in this paper. The 

influences of the frictional coefficient and external torque on the crack propagation lifetime are also 

discussed. The results show that the lifetime of crack propagation decreases significantly when the 

external load T increased from 100NM to 150NM. Given from the distributions of the accumulated 

plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging 

in 0.04~0.06. 
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1 Introduction 

Gear system is a critical subsystem in any machinery products and the gear wear is the most 

common failure mode [1, 2]. Wear means that the surface deterioration on the active contact profiles 

of machine components, e.g. gearing. Hence, the performance of gearing highly depends on the 

durability of tooth surface. In general, there are four basic wear modes: contact fatigue, adhesion, 

abrasion and corrosion, and contact fatigue is the most common mode of failure for gears under 

normal operating conditions. 

Generally, pitting and spalling are two types of surface contact fatigue. According to [3, 4], 

pitting and spalling can be distinguished from two aspects: appearance and mechanism of the crack 
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generation. With respect to the appearance, pitting appears as shallow craters at contact surfaces 

with the maximum depth of a pit around 10m, while spalling appears as deeper cavities (typically 

20 - 100m) at contact surfaces. The appearances of a pit and a spall are illustrated in Fig. 1. For 

the generation mechanism, Ding, et al. [3] believed that pitting results from the surface crack 

propagation, while spalling from the subsurface cracks that are initiated parallel to the contact 

surface. However, they indicated that the subsurface crack propagation will not lead to failure, and 

the possible reason for spalling formation is the ligament collapse spalling mechanism. The region 

between the crack tip and the contact surface is called ligament where the material can no longer 

hold its designated strength. As a result, catastrophic failure occurs with a deep cavity. 

 

Fig. 1 The appearances of a pit and a spall[3]  

 

Despite of a pit or a spall, the crack propagation and fatigue lifetime are always the main 

concern. The lifetime prediction model estimates the remaining cycles for pits or spalls to appear. 

The surface or subsurface crack grows with the cyclic contact loadings. Eventually, a crack becomes 

large enough to produce unstable growth, allowing material to break away from the surface, which 

results in a gradual deterioration of the surface. Failure occurs either when the surface deteriorates 

that the component cannot function as designed, or when the damage becomes severe enough that 

leads to another failure mechanism, e.g. tooth breakage [5]. Based on the stress intensity factor and 

Paris law, the crack propagation rate and fatigue lifetime of gearing can be given as [6] 

  
mda

C k
dN

    (1) 

Given from (1), the driving force behind crack growth is the cyclic change in stress intensity 

at the crack tip. Keer, et al. [7] proposed a line contact pitting model by assuming an initial crack 

with an initial angle relative to the contact surface. Mode II shear loading is used to represent the 

propagation driving force, and the fatigue life is given through calculating the stress intensity factor 

at the crack tip. Ding, et al. [8] studied the stress intensity factor ΔKI, ΔKII
 
at both the leading and 

trailing tips of the subsurface cracks at different depths and lengths. The results show that ΔKI
 
has 

not exceed the threshold of crack propagation, which indicates that a subsurface crack under 

compressive contact loading could not be propagated in Mode I. On the contrary, ΔKII
 
is generally 

greater than the threshold ΔKII,th, meaning that the subsurface cracks will be propagated in Mode II. 

However, the highest value of ΔKII is less than the critical SIF of crack failure, which demonstrates 

that a subsurface crack will not fail through Mode II propagation. The experimental results also 

show that the subsurface cracks propagating in Mode II are approximately parallel to the contact 

surface. Komvopoulos, et al. [9] selected linear elastic fracture mechanics and finite element 



 

3 

 

simulations to analyze subsurface cracking in a homogeneous half-space due to a moving asperity. 

The focus is on the direction and the rate of crack propagation due to indentation and sliding contact. 

The crack propagation directions in shear and tensile mode can be predicted based on the maximum 

range of the shear and tensile stress intensity factor. The results show that the maximum values of 

shear stress intensity factor ΔKτ at both crack tips occurs at θ = 0°, whereas tensile stress intensity 

factor ΔKσ at the left and right tips occur at θ = 70.5° and -70.5° respectively, where θ is the polar 

coordinate at the crack tips. The results demonstrate the horizontal subsurface crack would exhibit 

in-plane growth when the shear mechanism was dominant, which is in accordance with Ding, et al. 

[3]. In addition, if the tensile mechanism is responsible for the commencement of crack growth, 

propagation from the left tip would tend to occur toward the surface and from the right tip downward 

into the half-space. 

Besides the studies on single stress intensity factor, efforts have been devoted to the mixed 

mode stress intensity factors. In Aslantas, et al. [10], ∆𝐾𝑒𝑓𝑓
4 = ∆𝐾𝐼

4 + 8∆𝐾𝐼𝐼
4 is defined to evaluate 

mixed mode stress intensity factors KI, KII at the subsurface crack tip, and then propagated to crack 

extension with Paris-type equation. The results show that the values of KI are always negative under 

all load positions. Thus, the negative KI is assumed to be zero since that it has no effect on crack 

growth. So the subsurface crack growth is dominated by KII and ∆𝐾𝑒𝑓𝑓
4 = 8∆𝐾𝐼𝐼

4 . However, the 

maximum tangential stress criterion is used to determine the crack growth direction, and the results 

indicates that subsurface crack could grow toward the surface and form a pit (spall) eventually. 

The above mentioned studies are proposed under two-dimensional finite element simulation. 

Recently, special attentions are given to the three-dimensional finite element simulations [11, 12]. 

Ural, et al. [13] applied three-dimensional FEA model to predict crack shape for a spiral bevel pinion 

gear based on linear elastic fracture mechanics, combining with finite element method and 

incorporating plasticity-induced fatigue crack closure and moving loads, where KI is that of interest. 

Lin, et al. [14] established a three-dimensional boundary element model of cylindrical gear with 

crack in tooth root, and calculated the stress intensity factors KI, KII, KIII using the opening 

displacement, sliding displacement and tearing displacement of the crack tip. 

Despite of that utilizing the stress intensity factor and Paris law to determine the crack growth 

rate and fatigue life, extensive works have applied plastic deformation to study the crack 

propagation and fatigue life. A Hertzian pressure profile is generally used to determine the stress 

intensity factor. However, the pressure distribution in lubricated contacts is significantly different 

from that of the Hertzian. In addition, during heavily loaded lubricated contacts, high compressive 

stress in the contact zone virtually suppress Mode I stress intensities, and severely reduce Mode II 

stress intensities through the action of high friction between the crack faces [15]. Hence, the stress 

intensity factors based on the linear elastic fracture mechanics is not applicable for the situations of 

heavy loads that may result in plastic deformation. Bower, et al. [16] proposed that the fatigue spall 

initiation and propagation are due to the accumulated plastic strain process rather than stress 

intensity at the crack tip. Since that the accumulated plastic deformation in the contact layer is 

formed with repeated loading, micro-cracks are initiated in the layer. With the continuous plastic 

strains, the micro-cracks could move to the surface and eventually lead to a relatively large spall. 

Then the spall may continue to propagate, resulting in a large scale rolling contact fatigue spall. 

Johnson [17] reviewed the research of Cambridge on the mechanics of plastic deformation under 

surface and subsurface layers in rolling and sliding contact. Four possible regimes of behavior are 

identified to ascend load: perfectly elastic, elastic shakedown, plastic shakedown or cyclic plasticity, 
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incremental collapse or ratcheting. A simple non-linear kinematical hardening model of material 

behavior is also given, which achieves excellent prediction performances of ratcheting rate in line 

contact. Cheng, et al. [18] proposed a model to predict crack initiation life (the cycle numbers the 

contact undergoes until crack initiates) under contact fatigue based on dislocation pileup theory, 

where the influence of residual stress, hardness, irreversibility of plastic deformation and many other 

parameters on the crack initiation life are discussed. Xu, et al. [15] proposed an analytical model to 

investigate the effects of dent on spall initiation and propagation in lubricated contacts based on the 

damage mechanics concept, where the fatigue spall initiation and propagation are results from the 

accumulated plastic strain rather than the stress intensity at the tip of the crack. A dent profile from 

finite element analysis is used for a spherical debris denting the contact surface. Spall size and 

growth rate versus cycle number are presented. The results indicate that spall always initiates at the 

dent edge. Kang, et al. [19] investigated the effects of contaminants in heavily loaded rolling and 

sliding contacts by developing a dynamic time dependent finite element model in order to determine 

the elastic-plastic deformation and contact force generated between the mating surfaces and a 

spherical debris when debris passing though the contact region. The effects of various parameters 

are obtained, such as debris size, material properties, frictional coefficients, applied loads and 

surface speeds on the elastic-plastic deformation and contact force of the system. Arakere, et al. [20] 

investigated the rolling contact fatigue initiation and spall propagation characteristics of different 

bearing materials. Elastic and elastic-plastic subsurface stress fields are computed using finite 

element models that incorporates the full three-dimensional ball-raceway geometry. The results 

show that there are extensive yielding at the spall edges due to ball rolling contact, and the impact 

loads result in extensive plastic deformation of the spall trailing edge, leading to degradation and 

release of material resulting in spall propagation. 

In summary, the main research on the subsurface or surface crack in gears generally selects the 

two-dimensional finite element model, or applies the static gear model, where the surface contact 

loads are artificially defined and applied along with the contact surface to calculate the stress or 

strain for gears. In this paper, we assume that a subsurface defect exists in one tooth of a pair of 

heavy loaded spur gears to study the crack propagation and lifetime of spur gears. A dynamic 

analysis of gear engagement is performed with the three-dimensional finite element model using 

ANSYS Workbench transient analysis. Therefore, the time-varying sliding-rolling contact loads due 

to the gear engagement can be obtained to compute the stress or strain for each time increment. The 

defective tooth is divided into many small elements in the finite element model. In this study, the 

accumulated plastic deformation of each element near the subsurface crack is selected to decide the 

crack propagation and fatigue life. In addition, the influences of different sizes of these adjacent 

elements are compared in order to decide the optimal element size. Different loads are applied to 

the wheel gear to study the relationship between loads and crack propagation time. Meanwhile, the 

effects of the various frictional coefficients on contact surfaces are also studied. 

This paper is organized as follows: Section 2 introduces the gear subsurface defect model in 

ANSYS Workbench transient analysis. Section 3 describes the calculation procedure of the 

subsurface crack propagation based on the accumulated plastic strain of each element near the crack. 

In Section 4, the effects of element size, frictional coefficient and external load on the crack 

propagation time are discussed. In addition, the normal and shear stresses of the two crack tips that 

are close to the addendum and tooth root are calculated through the linear elastic FEA model. 

Section 5 concludes this paper. 
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2 Gear subsurface defect model 

The finite element analysis (FEA) model is generally used to analyze crack propagation. In this 

study, ANSYS Workbench is selected to establish the FEA model, and obtained the stress and strain 

results that of interest. The three-dimensional spur gear model is illustrated in Fig. 2. The coupled 

rigid and flexible mode are proposed to simulate the mesh motion between the defective gear and 

the normal gear. As shown in Fig. 2, the pinion gear and wheel gear under study have five flexible 

teeth, while the rest are rigid components that will not be deformed in the calculation. The 

subsurface defect is located at one of the flexible teeth of pinion gear, whose stress and strain results 

are of the main concern. 

 

Fig. 2 The gear FEA model 

 

Fig. 3  The size and location of the defect in the tooth 

In order to locate the subsurface crack, a block with 0.5mm × 0.5mm × 0.05mm is removed 

from the face of the defective tooth near the pitch line, and one crack in the shape of the coin is 

located on this block, see Fig. 3. The crack is set on the subsurface, and the original sizes are 

2a=0.05mm, 2b=0.09mm, h=0.01mm and d=0.04mm. The original sizes and depths of the 

subsurface crack are defined after [10, 13]. To avoid the geometrical incompatibilities of the 

deflected tooth, the defective tooth is divided into eight regular parts. After that, the block (where 

the subsurface crack locates) and the rest part of this tooth are grouped into one multibody part using 

“form new part” tool in ANSYS Workbench, which enables the use of shared topology among the 

bodies to obtain high quality mesh.  

The FEA model of the spur gears is shown in Fig. 4. The element type of the chipped 

rectangular solid is solid 186, and the most suitable size of these elements in FEA model will be 

discussed in Section 4.1. The dense mesh near the defective part ensures the accurate prediction 

results for the crack propagation. 
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Fig. 4  The FEA model of the spur gears 

The basic information of the pair of spur gears is given in Table 1. 

Table 1  The basic data of the pair of spur gears 

 pinion wheel 

Gear material 40CrNiMoA 

Pitch diameter (mm) 38.1 50.8 

Number of teeth 24 32 

Tooth width (mm) 10 10 

module 1.6 1.6 

Base diameter (mm) 35.8 47.7 

Pressure angle on pitch circle 20° 20° 

Fixed blend radius (mm) 0.4 0.4 

 

The pinion gear has a speed of 5000RPM and rotates clockwise by 30 degrees to ensure that 

the defective tooth can experience the whole meshing period. The original position of the pinion 

gear is shown in Fig. 2, while its teeth contact path is illustrated in Fig. 5. The wheel gear is applied 

external torque ranged from 100NM to 150NM and rotates anticlockwise. Therefore, the transient 

sliding-rolling contact loads between the surfaces of the gears will be produced to obtain the 

transient accumulated plastic strain and stress directly from the ANSYS Workbench. Then the 

propagation time of the subsurface crack can be calculated using dynamic analysis though the 

methodology given in Section 3. 

 

Fig. 5  The path of teeth contact for pinion gear 

Noted that the friction coefficient f between contact surfaces cannot be ignored. In the general 

case of gear tooth contact at well-lubricated condition, the surface traction is low with a friction 

coefficient f
 
about [0.04, 0.06] [4]. Thus, f

 
is set as 0.04 and 0.06 to study the effects of different 

friction coefficients on the contact surfaces.  
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3 Calculation of the crack propagation time 

3.1 Damage variable for crack propagation 

The defective tooth is divided into small elements, especially near the area where the 

subsurface defect happens. Each element is a representative volume element from the view point of 

the continuum mechanics, and it is small enough that every physical quantity can be treated as the 

evenly distributed constants [15]. For each element near the defect, a damage variable D is defined 

as 

 DV
D

V
   (2) 

where, VD is damage volume, V is the total volume of the element. D = 0 means the element is 

undamaged, and D = 1 indicates fully damaged. 

Based on the damage law by Lemaitre [21], the damage accumulation process of the element 

is 

  p

p pD

m

dEdD Y
H E E

dN S dN
     (3) 

where, Sm
 
is the material constant, Ep is the accumulated plastic strain that is the sum of plasticity 

of each element around the fault and is also a function of cycle number N, EpD is the critical plastic 

strain below which no damage will occur. According to Xu, et al. [15], Sm
 
and EpD can be determined 

accurately by experimental tests for different materials, where EpD = 0.1 is recommended and Sm = 

4×106 is selected for our study. H is a step function as 

 
 

 

0,

1,

p pD p pD

p pD p pD

H E E E E

H E E E E

  

  
  (4) 

When the accumulated plastic strain exceeds the critical strain, the damage is accumulated with 

the defect growing. Thus, Eq.(3) can be applied. Y is the strain energy density release rate defined 

as 

 
 

2

2 1

Mises trC
Y

E D





  (5) 

where, σMises is the Von Mises stress of each element, E is elasticity modulus, D is the accumulated 

damage of each element, and Ctr is the triaxiality coefficient. 

    
2

2
= 1+v 3 1 2v

3

h
tr

Mises

C




 
   

 
  (6) 

where, ν is the Poisson ratio, σh = (σx +σy + σz)/3, σx, σy, σz is the normal stresses for each element. 

All σMises, σx, σy, σz are varied with time step t in one cycle due to the transient analysis. 

In the numerical procedure, there is a damage variable Di(N+1) associated with element i in 

the (N+1)th cycle, which can be obtained from the element’s damage in the Nth cycle Di(N): 

          
1

+1 = +

end

i i p p pDi i
m

Y
D N D N t H E N E dt

S
   

    (7) 

where, (Δεp(t))i is the increment of the accumulated plastic strain in each time step of one cycle for 

element i. Herein, the accumulated plastic strain for element i, i.e. (Ep(N))i, is directly obtained in 
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each time step of one cycle from FEA though ANSYS Workbench. 

When the damage variable Di(N+1) reaches 1, the corresponding element is damaged. Then, 

the lifetime (or the total cycle number) for each element can be calculated through Eq.(7). The 

detailed calculation procedure is proposed in Fig. 6. 

 

Fig. 6  The calculation procedure of total cycle number of one element 

 

To obtain the plastic deformation, the bilinear kinematic hardening strain-stress relationship is 

employed in the procedure of simulation computation. The initial slope of the curve is the elastic 

modulus of the material E. When it arrives the specified yield stress σ0, plastic strain will develop, 

while the back stress will evolve that stress versus strain will remain a linear relationship, see Fig. 

7. The corresponding slope is defined by the specified tangent modulus ET 
[22]. In this paper, σ0 = 

1050MPa and ET = 2090MPa. 

 

Fig. 7 Stress vs. total strain for bilinear kinematic hardening 

3.2 The crack propagation time 

Due to the presence of crack, the adjacent elements are small in size but large in number, which 

is illustrated in Fig. 4. During one cycle, the defective tooth goes though the double teeth-meshing 

area, the single teeth-meshing area and the double teeth-meshing area in sequence, and the plastic 

strain of adjacent elements occurs. Through ANSYS Workbench Transient Analysis, we can obtain 

the accumulated plastic strain of these elements in one cycle, which then will be used to calculate 

the total cycle number for elements following the procedure in Fig. 6.The crack propagation time is 
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based on the cycle numbers of these elements. 

Fig. 8 I, II, III (b) shows the plastic strains of these elements near the crack are accumulated 

during one cycle. The elemental mean results of each deformed element, including accumulated 

plastic strain, equivalent stress and mean stress, are used to compute the total cycle number through 

the procedure in Fig. 6. When all those plastically deformed elements near the crack are damaged, 

it can be assumed that the subsurface crack propagates to the region of these elements. After that, 

the crack profile should be modified accordingly. The entire process will iterate until the crack 

propagates to the contact surface, eventually form one deep cavity, see Fig. 8. Details about the 

whole iterative process is given in Fig. 9. 

 

Fig. 8  The demonstration of the calculation process 

The original 

state I

State II: the 

crack  size is 

larger, while its 

depth is smaller

State III: the 

crack  size is 

larger, while its 

depth is smaller

  

The final state: 

one deep cavity 

forms on the 

surface

First iterative 

computation, 

and modify 

FEA model

Second iterative 

computation, 

and modify FEA 

model

Third iterative 

computation, 

and modify FEA 

model

The ith iterative 

computation, 

modify FEA model 

for the ith time
 

Fig. 9  The iterative process flow chart 

Noted that different element size near the subsurface crack may lead to different iteration times, 

crack size and the final crack propagation time. Such that, special attention must be paid to the 

element size near the subsurface crack. The demonstration of the whole process is illustrated in Fig. 

8, in which the subsurface crack is in light white color. As shown, larger 2a, 2b and h results in 

smaller d after each iteration, which means that the crack becomes larger and locates closer to the 

contact surface. In fact, during the subsurface crack propagation, the region surrounded by 

plastically deformed elements would not peel off the gear until the crack propagates to the surface, 
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but has little effect on the analysis of crack propagation, see Fig. 8 I, II, III (d). Therefore, in order 

to achieve a regular and simplified subsurface crack model that can gain the convergent results with 

high efficiency, we modify the crack profile each time by ignoring the elements in this region. 

4 Results and Discussion 

4.1 Discussion on the different element sizes 

In order to use the plastic strain of the elements near the crack to investigate the subsurface 

crack propagation, the targeted elements need to be small enough to guarantee reasonable strain or 

stress results. However, it is quite difficult to explicitly define the size of these elements since 

different element size near the crack may lead to different iteration times, crack and final crack 

propagation time. Therefore, the element size need to be selected carefully. The element sizes are 

selected as 0.010mm, 0.015mm, 0.020mm, 0.025mm, 0.030mm, 0.035mm and 0.040mm for 

comparison. 

 

Fig. 10  The FEA models based on different element sizes 

 

Table 2  The average of skewness with different size of element 

The element size(mm) 0.01 0.015 0.020 0.025 0.030 0.035 0.040 

The average of skewness  0.119 0.160 0.165 0.176 0.202 0.209 0.212 

 

To select the optimal size of element, a quality measure for a mesh named skewness is applied 

with the range from 0~1, where zero indicates a best element, and one indicates a worst element, 

see Table 2. It can be seen that the elements near the crack are not uniform and most of them are 

highly skewed with the sizes of 0.030mm, 0.035mm and 0.040mm, also see Fig. 10 (e), (f) and (g), 

which may lead to terrible simulation results. On the contrary, better elements around the crack are 

obtained when the size is 0.010mm in Fig. 10 (a). However, the total element number is more than 

50000, which is rather time-consuming to compute. Thus, the sizes of 0.015mm, 0.020mm, and 

0.025mm are chosen for comparison. The crack propagation time and relevant results are listed in 

Table 3, where the maximum iteration is equal to the times of model modification to form a cavity 

on the surface. 

From Table 3, the maximum possible size of the final crater for 0.025mm is larger than that of 

0.015mm, while the total cycle number is lower, which is not true in reality. As a result, the sizes of 

0.015mm and 0.020mm are more appropriate. For more precise results, 0.015mm is selected as the 
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optimal element size. 

Table 3 The final crack propagation time 

Element 

size (mm) 

Maximum 

iteration 

The calculated cycle number 

of each iteration 

Final crack 

propagation 

time/Total cycle 

number 

The crater 

maximum 

possible size

（2a×2b/mm) 
1 2 3 

0.015 3 6.6×107 4.8×107 7.0×107 1.84×108 0.07×0.09 

0.020 3 1.43×108 4.4×107 5.2×107 2.39×108 0.085×0.105 

0.025 2 5.6×107 4.9×107  1.05×108 0.075×0.095 

 

With the element size of 0.015mm under the condition of T = 100N and f = 0.06, the calculated 

cycle numbers to each state are listed in Table 4. The tooth contact pressure maps relative to the 

fault location for state I-III is shown in Fig. 11 at t = 0.19×10-3s and 0.27×10-3s respectively. Details 

are given in the supplementary material. Herein, state I is the initial state of the gears as illustrated 

in Fig. 3. The crack size and depth for each state are also given with their appearances in Fig. 12. 

After the third iterative in state III, the model is modified for the third time and a cavity is formed 

on the contact surface, which is state IV. 

Table 4  The calculation results in each state 

 The cycle numbers to the state The size of the crack  The depth of the crack 

2a 2b h d 

State I  0.05 0.09 0.01 0.04 

State II 6.6×107 0.08 0.12 0.024 0.026 

State III 1.14×108 0.11 0.15 0.038 0.012 

State IV 1.84×108 0.14 0.18 0.05 0 

 

 

Fig. 11  The tooth contact pressure maps relative to the fault location 
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Fig. 12  The crack appearance in each state 

4.2 Results at different frictional coefficients 

Under the conditions of f = 0.04 and 0.06, the external torque T = 100NM and the pinion speed 

of 5000RPM, the time-varying global maximum values of accumulated plastic strain distributed 

over the defective tooth in one mesh cycle for the first three state (state I, II, III in Fig. 12) are 

illustrated in Fig. 13. Each curve presents the strain output calculated by ANSYS Workbench of 

different states in different conditions during one mesh cycle of the defective tooth. It is shown that 

the plastic strain starts to accumulate when the defective tooth comes to engage under both 

conditions in period B, and the maximum accumulated plastic strains increase almost at the same 

time periods, which are about 0.16×10-3s ~ 0.19×10-3s and 0.27×10-3s ~ 0.37×10-3s in period B and 

period D. However, the final maximum value of accumulated plastic strain in the case of f = 0.06 is 

slightly larger than that in the case of f = 0.04 for each iteration, which may due to the higher friction 

caused by higher frictional coefficient. 

 

Fig. 13  The accumulated plastic strain vs time in the case of different f  
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At t = 0.19×10-3, the global maximum accumulated plastic strain remains unchanged after the 

first rise in period B, and reaches their maximum values at t = 0.5×10-3s. The distributions of the 

accumulated plastic strain at the two specific time are shown in Fig. 14. The results demonstrate 

that the maximum accumulated plastic strain takes place around the edge of the subsurface crack. 

When the defective tooth is in the state III, the elements on the contact surface begin to damage, 

meaning that the crack has propagated to the surface. When t = 0.19×10-3s, the contact load moves 

from tooth root to the edge of the crack. Thus, the accumulated plastic strain reaches its maximum 

value over the period B, which are about the double teeth meshing period for the defective tooth. 

With the contact loads moving, the plastic strain over this tooth continue to accumulate, but 

the accumulated value is still less than that at t = 0.19×10-3. Therefore, the accumulated plastic 

strains experience no apparent growth during 0.19×10-3s ~ 0.27×10-3s in period C. Then, the 

defective tooth starts single teeth meshing in period D, and the accumulated plastic strain increase 

sharply around the crack end near the addendum. Eventually, the accumulated plastic strain in this 

area reaches globally maximum. 

 

Fig. 14  The accumulated plastic strain distributions under different f 
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Besides the global maximum value of the accumulated plastic strain, the value for any target 

elements in one cycle of each gear state are also obtained from the FEA model. For each state, there 

are more than 30 elements around the crack that have plastic deformation and the total cycle number 

of each element can be calculated. The crack propagation time based on each element total cycle 

number in the case of f = 0.04 and 0.06 is illustrated in Fig. 15. In each state, the total cycle numbers 

for the first six and the last four completely damaged elements are showed. As shown, the crack 

propagation time in the case of f = 0.04 is about 1.9×108 cycles, which is a little bit larger than 

1.84×108 cycles when f = 0.06. Hence, it can be concluded that the total cycle numbers in the two 

cases shares no significant difference, which means the friction coefficient has little effect on the 

crack propagation time within the reasonable range (about 0.04~0.06). 

 

Fig. 15  The crack propagation time in the case of different f 

4.3 Results at different loads 

Under the conditions of T = 150NM and 100NM, the frictional coefficient f = 0.06 and the 

pinion speed of 5000RPM, the time-varying global maximum values of accumulated plastic strain 

over the defective tooth in one mesh cycle for the first three state (state I, II, III in Fig. 12) are 

illustrated in Fig. 16. It can be seen that the plastic strain over the defective tooth is accumulated 

earlier in period B for T = 150NM, and its value is larger than that from T = 100NM after the 

defective tooth engages. Under T = 150NM, the maximum accumulated plastic strains increase 

significantly in period B and D. During this two periods, the contact load moves from tooth root to 

the edge of the crack and the defective tooth begins single teeth meshing. Such situation is the same 

for T = 100NM.  

 

Fig. 16  The maximum accumulated plastic strain vs. time in the case of different T 
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In terms of the accumulated plastic strain, it increases slightly for T = 150NM when t = 2.2×10-

4s ~ 2.4×10-4s for period C. The distributions of accumulated plastic strain when t = 0.19×10-3s, 

0.24×10-4s and 0.5×10-3s are shown in Fig. 17. It could be derived that the elements around the crack 

tips are not damaged earlier than other elements around the crack. 

 

Fig. 17  The accumulated plastic strain distribution under different T 

The crack propagation times based on the total cycle number are illustrated in Fig. 18 for T = 

100NM and 150NM. It is clear that the crack propagation time when T = 150NM is about 6.6×107, 

which is much less than 1.84×108 under T = 100NM. 

 

Fig. 18  The crack propagation time in the cases of different T 
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4.4 Discussion on the stress results with linear elastic FEA 

For comparison, the normal and shear stresses of the two crack tips (close to the addendum and 

tooth root) are proposed with the pinion speed 5000turns/min. The rectangular coordinate systems 

at the two crack tips are shown in Fig. 19. The calculated stress results are given in Fig. 20 and Fig. 

21.   

 

Fig. 19  The rectangular coordinate systems at the crack tips 

 

Fig. 20  The normal & shear stresses of the crack tip near the addendum 

 

Fig. 21  The normal & shear stresses of the crack tip near the tooth root 

Given from Fig. 20 and Fig. 21, it can be seen that the shear stress τyz and τxz are negligible 

compared with τxy. Meanwhile, the normal stresses are almost all negative and their absolute values 

are very large over the whole meshing period, which is considered as no effect on the subsurface 

crack growth based on the stress intensity factors theory. If it is simplified to a XY plane problem, 

there will be only KII, which means the subsurface cracks propagation is dominated mainly by Mode 

II. According to Y Ding [3, 4, 8] and K. Komvopoulos [9], the subsurface propagates parallel to the 
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surface if it is dominated by Mode II. The value of KII calculated by τxy is always small at the crack 

tips. Therefore, the spalling could not be formed only in Mode II. It has been proved that under 

heavily loaded contacts, Mode I and II stress intensities will be suppressed and significantly reduced 

by the high compressive stress in the contact zone, respectively. 

5 Conclusion 

In this paper, we proposed a method to calculate the lifetime of the subsurface crack 

propagation time. The accumulated plastic strain is applied instead of stress intensity factors for the 

heavily loaded lubricated contacts. By using ANSYS Workbench, the FEA model of one pair of 

gears is built with a subsurface crack in a tooth of the pinion. The gear system is divided into small 

elements especially for the defective tooth. The computation of the subsurface crack propagation 

time is based on the time-varying accumulated plastic strain, equivalent stress and mean stress of 

these elements around the subsurface crack. The proposed method has been demonstrated to be 

efficient and accurate by just applying external torque and speed to the gear system to get the time 

varying results through the transient analysis without using the contact loads. 

The influences of the frictional coefficient and external torque on the crack propagation 

lifetime are also discussed. Under different frictional coefficients with external load T =100NM, the 

maximum accumulated plastic strain majorly increases over the same two time periods: 0.16×10-3s 

~ 0.19×10-3s and 0.27×10-3s ~ 0.37×10-3s, which are period B and period D respectively. Under T 

=150NM, the maximum accumulated plastic strain also increases in period C when t = 2.2×10-4s ~ 

2.4×10-4s. The final maximum value of accumulated plastic strain for f = 0.06 is slightly larger than 

that for f = 0.04, while the crack propagation time for f = 0.04 is longer than that for f = 0.06. The 

accumulated plastic strain distribution in various time is also investigated. The results show that the 

lifetime of the crack propagation shares no significant difference when the friction coefficient is 

within a reasonable range (about 0.04~0.06). 

The crack propagation time under T = 150NM is much shorter than that under T = 100NM. 

Combined the results from the accumulated plastic strain distribution in different frictional 

coefficients or loads, it could be derived that the crack tips are generally not damaged earlier than 

other edges of the crack, which means that the subsurface crack propagates to all directions but not 

just along the direction of the load movement. 
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