
sensors

Article

Stochastic Modeling and Analysis of Multiple
Nonlinear Accelerated Degradation Processes
through Information Fusion

Fuqiang Sun 1,2, Le Liu 1, Xiaoyang Li 1 and Haitao Liao 2,*
1 Science and Technology on Reliability and Environmental Engineering Laboratory,

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China;
sunfuqiang@buaa.edu.cn (F.S.); liule@buaa.edu.cn (L.L.); leexy@buaa.edu.cn (X.L.)

2 Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA
* Correspondence: liao@uark.edu; Tel.: +1-479-575-6196

Academic Editor: Xue-Bo Jin
Received: 22 June 2016; Accepted: 27 July 2016; Published: 6 August 2016

Abstract: Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime
of a highly reliable product whose underlying failure process may be traced by the degradation of
the product’s performance parameters with time. However, most research on ADT mainly focuses
on a single performance parameter. In reality, the performance of a modern product is usually
characterized by multiple parameters, and the degradation paths are usually nonlinear. To address
such problems, this paper develops a new s-dependent nonlinear ADT model for products with
multiple performance parameters using a general Wiener process and copulas. The general Wiener
process models the nonlinear ADT data, and the dependency among different degradation measures is
analyzed using the copula method. An engineering case study on a tuner’s ADT data is conducted to
demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method
is quite effective in estimating the lifetime of a product with s-dependent performance parameters.

Keywords: accelerated degradation testing; nonlinearity; general Wiener process; multiple
performance parameters; copulas; s-dependency

1. Introduction

Modern products are developed to have good quality and high reliability. For some safety-critical
components and systems, they are even designed to last for an extremely long time to avoid the
catastrophic consequences of potential failures. It is a big challenge to obtain sufficient amount of
time-to-failure data by testing such products under the normal operating environments and sometimes
even under harsher conditions [1]. Obviously, the traditional failure-time data analysis and testing
methods are unsuitable for reliability analysis of such highly reliable products.

In engineering applications, many failure mechanisms can be traced to underlying degradation
processes (e.g., cumulative wear, crack growth, corrosion, fatigue, material aging, etc.) [2]. As a result,
the degradation analysis method has been introduced to handle reliability modeling problems based
on the products’ degradation information obtained from historical data or degradation tests [3].
Especially, accelerated degradation testing (ADT) has been used to collect the degradation data by
exposing the test specimens to severer-than-normal conditions. In the last two decades, ADT has
been intensively studied as an effective tool for reliability verification and lifetime evaluation of
modern products. Successful applications of ADT include the reliability analyses of batteries [4],
super luminescent diode (SLD) [5], smart electricity meter [6], metal oxide semiconductor field effect
transistors (MOSFETs) [7], etc.
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The essence of ADT-based decision-making is to find a suitable mathematical model, namely
degradation model, which is capable of describing the degradation paths of samples tested at different
stress levels. The existing degradation models can be categorized into two broad classes, i.e., stochastic
process models and general path models [1]. The stochastic process models have attracted more
attention because of their properties of time-dependent structures. The typical models include
the Wiener process (i.e., Brownian motion), Gamma process and Inverse Gaussian (IG) process.
The Gamma and IG processes are suitable for modeling a degradation process which is always
positive and strictly increasing. On the other hand, the Wiener process with a linear drift has become
the most popular stochastic degradation model [1,8]. Its related work and variants for the cases
involving covariates, random effects and measurement errors have been extensively reviewed by
Ye and Xie [1]. Nonetheless, the linear drift Wiener process cannot be directly used to describe a
nonlinear degradation process. In many engineering applications, however, nonlinearity is quite
natural due to the complex structures and failure mechanisms of the products. To overcome
this obstacle, some transformation methods for degradation data have been used, e.g., time-scale
transformation [9–11] and log-transformation [12–14]. However, not all nonlinear degradation
processes can be properly transformed [15]. To characterize the dynamics and nonlinearity of the
degradation process, Si et al. [15] developed a Wiener process model with a nonlinear drift coefficient,
and presented analytical approximations to the probability distribution functions of the first hitting
time under a mild assumption. Further, Wang et al. [16,17] presented a general Wiener process model
for residual life estimation which jointly takes into account the nonlinearity, temporal uncertainty,
and unit-to-unit variability. In this paper, we will first introduce the general Wiener process and then
extend this model for analyzing nonlinear ADT data.

It is also worth pointing out that the aforementioned studies only consider the cases involving a
single degradation measure. Indeed, modern engineering systems are often composed of multiple
components with different functions [18]. As a result, a product may have multiple degradation
measures and any of them may be a cause of product failure [19]. Such degradation measures may
include not only the functional and/or performance parameters of the product, but also some indirect
degradation features extracted from raw sensory signals [20], such as vibration, force and acoustic
signals, temperature and voltage. Usually, degradation measures are not independent of each other,
and some failures may be attributed to the interaction of multiple degradation processes. In practice,
it is often difficult to determine the importance of each source of degradation information. To avoid
possible one-sidedness, it would be more appropriate and accurate to perform reliability estimation
through suitable fusion of information from different degradation measures. When modeling ADT
data, such efforts become more challenging as the data are collected under different stress levels.

In the last decade, some progress has been made on multivariate degradation modeling.
Huang and Askin [21] discussed competing modes of catastrophic failure and degradation failure
by assuming the independence of multiple degradation processes. Crowder [22] suggested that such
an independence assumption can only be made if a failure mechanism has absolutely no direct or
indirect impact on the likelihood of other failure mechanisms in the system. He also pointed out that
some shared factors (e.g., same environmental/operational stresses, usage history, materials quality,
and maintenance of the system) may increase the possibility of dependence of different failure
mechanisms in the system. Therefore, it is safer to consider the dependency between performance
parameters in a multivariate degradation model.

In the literature, two popular methods have been utilized to capture the dependence between
performance parameters, namely, the use of multivariate joint distributions [23–25] and the copulas
method [18,19,26–33]. In practice, assuming a multivariate joint distribution may not be suitable
for all conditions [34], and sometimes it is difficult, if not impossible, to find an appropriate joint
distribution in many cases. As a useful alternative, the use copulas enables estimating a multivariate
joint distribution by combining the marginal distributions using a joint dependence structure [35].
Moreover, copulas do not impose constraints on the univariate marginal distributions [36].
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Due to these advantages, the copulas method has attracted much attention in reliability engineering.
Sari et al. [26] introduced a copula function to describe the correlation between two performance
parameters, and combined it with a generalized linear model for bivariate constant-stress degradation
data. Pan et al. [27,28] discussed the bivariate degradation modeling approaches based on Wiener
processes and Copulas, respectively, under the normal operating stress and constant-stress accelerating
conditions as well. Similarly, Peng et al. [18], Liu et al. [29] and Hao et al. [30,31] also adopted copulas to
characterize the dependency between two performance parameters, and developed their own bivariate
degradation models. Wang and Pham [19] applied time-varying copulas for handling the s-dependent
relationship among competing degradation processes, and provided a numerical example with two
degradation processes. Hong et al. [32] used copulas to investigate the influence of degradation
dependency of multiple components on the optimal maintenance decisions. Xi et al. [33] developed
a copula-based sampling method for data-driven prognostics. However, most of the previous work
focuses on degradation processes under normal operating conditions, and scarce studies have been
conducted on the dependency of multiple degradation processes under accelerated conditions.

This paper is aimed at making an early attempt to model s-dependent multivariate ADT data
using general Wiener process and copulas. First, the general Wiener process is used to model
nonlinear univariate accelerated degradation processes. Then, the copula method is adopted to find
the joint probability distribution of multiple degradation processes. Next, parameter estimation
of the proposed model is performed using the Inference Functions for Margins (IFM) method,
and the Akaike Information Criterion (AIC) is employed to compare the goodness-of-fit of candidate
models. Finally, a real-world case study on the tuner’s CSADT data is utilized to demonstrate the
usefulness of the proposed method.

The remainder of this paper is organized as follows: Section 2 presents the univariate ADT model
based on the general Wiener process and its parameter estimation method. Section 3 elaborates on the
copula-based multivariate ADT modeling method, including introduction to copulas, multivariate
dependent accelerated degradation model, and statistical inference. Section 4 provides the case study,
and Section 5 concludes the paper.

2. General Univariate Accelerated Degradation Model

As mentioned earlier, ADT attempts to obtain a product’s degradation information more quickly
by exposing the test units to harsher-than-normal conditions. In many applications, two ADT methods
have been widely used: constant-stress ADT (CSADT) and step-stress ADT (SSADT). For illustration
purposes, this paper will focus on CSADT.

ADT modeling is concerned with accelerated degradation models and data analyses [37].
Generally, accelerated degradation model is composed of both stress-acceleration model and
degradation model, where the stress-acceleration model describes the relationship between the levels
of accelerating stress and the degradation rate, and the degradation model depicts the evolution of
degradation process over time. In this section, a nonlinear univariate CSADT model based on the
general Wiener process is presented.

2.1. Stress-Acceleration Model

To estimate the lifetime or degradation rate of a product at the use conditions, a stress-acceleration
model should be obtained first. Usually, stress-acceleration model can be obtained from either some
physical knowledge about the product or empirical observations. Some widely used models include
Arrhenius model, Eyring model, and inverse power model [38]. After a proper transformation of stress
Si, a stress-acceleration model for degradation rate dr(Si) of the product under stress level Si can be
expressed as [11]:

drpSiq “ exppa ` bϕpSiqq (1)
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where a and b are unknown constants, and ϕ(Si) is a function of Si depending on the stress type,
e.g., ϕ(Si) = 1/Si for absolute temperature and ϕ(Si) = lnSi for voltage.

2.2. Accelerated Degradation Model

2.2.1. An ADT Model Based on the General Wiener Process

The general Wiener process used for degradation modeling can be expressed as [16]:

X ptq “ µ

ż t

0
λ pt; θq dt` σB pτ pt; γqq ` Xp0q (2)

where X(t) is the degradation value at time t; X(0) is the initial degradation value (for simplicity,
we assume X(0) = 0); B(.) is the standard Brownian motion; µ is the drift coefficient reflecting the
rate of degradation; σ is the diffusion parameter describing the unit-to-unit variability and variability
due to operational and environmental conditions; λ(t; θ) and τ(t; γ) are the non-decreasing time-scale
transformation which can describe the nonlinear property of the degradation process, and θ and γ are
the corresponding parameters.

By further assuming that Λ pt; θq “
r t

0 λ pt; θq dt, we have:

M0 : Xptq “ µΛpt; θq ` σBpτpt; γqq (3)

Clearly, the basic Wiener process model [1], as shown in Equation (4), is a special case of
Equation (3) when Λ(t; θ) = τ(t; γ) = Λ(t):

M1 : Xptq “ µΛptq ` σBpΛptqq (4)

For clarity, Equation (3) is called model M0, while Equation (4) is called model M1 in this paper.
In model M0, since E[X(t)] = µΛ(t; θ) and Var[X(t)] = σ2τ(t; γ), one can see that θ reflects the

behavior of the expectation of degradation pattern while γ reflects the behavior of the variance of
degradation. In model M1, the two parameters are assumed to be the same.

When using model M0 for ADT analysis, the drift coefficient µ is modeled as a function of stresses,
i.e., as a stress-acceleration model [1,5,10]. According to Equation (1), we have:

µ “ exppa ` bϕpSiqq (5)

The corresponding lifetime distribution can be obtained based on the time when the degradation
path X(t) exceeds the failure threshold ω for the first time, i.e., First Passage Time (FPT). According to
the property of linear Wiener process, the probability density function (PDF) of FPT follows an inverse
Gaussian distribution [39]:

f ptq “
ω

t
?

2πσ2t
exp

˜

´
pω´ µtq2

2σ2t

¸

(6)

Hence, for model M1 considering the time-scale transformation, the PDF of FPT and the reliability
function of the product can be easily obtained as:

f1 ptq “
ω

Λ ptq
a

2πσ2Λ ptq
exp

˜

´
pω´ µΛ ptqq2

2σ2Λ ptq

¸

dΛ ptq
dt

(7)

R1 ptq “ Φ

˜

ω´ µΛ ptq
σ
a

Λ ptq

¸

´ exp
ˆ

2µω

σ2

˙

Φ

˜

´
ω` µΛ ptq
σ
a

Λ ptq

¸

(8)

respectively. However, the analytical formula of PDF of FPT for model M0, where Λ(t; θ)‰τ(t; γ),
cannot be directly obtained from the above equations.
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2.2.2. Derivation of Failure Time Distribution for Model M0

Let the time-scale transformation be s = τ(t; γ), so that t = τ´1(s; γ). We also define
Λ(t; θ) =Λ (τ´1(s; γ), θ) = ρ(s; θ). As a result, Equation (3) becomes [16]:

Xpsq “ µρps; θq ` σBpsq (9)

We define:

κ ps; θq “ µ
dρ ps; θq

ds
(10)

Under some mild assumptions, the PDF of stochastic process X(s) can be approximated by
(according to Theorem 2 in Si et al. [15] p. 56):

p0 psq –
1

?
2πs

ˆ

ω´ µρ ps; θq

σs
`

κ ps; θq

σ

˙

¨ exp

˜

´
pω´ µρ ps; θqq2

2σ2s

¸

(11)

Hence, the PDF of failure time when X(t) exceeds ω can be obtained by substituting s
with τ(t; γ) as:

p0 ptq –
1

a

2πτ pt; γq

ˆ

ω´ µΛ pt; θq

στ pt; γq
`

κ pτ pt; γq ; θq

σ

˙

¨ exp

˜

´
pω´ µΛ pt; θqq2

2σ2τ pt; γq

¸

dτ pt; γq

dt
(12)

Equation (12) can be further approximated as:

f0 ptq – p0 ptq
M

ż `8

0
p0 ptq dt (13)

and the corresponding Cumulative Distribution Function (CDF) of FPT is:

F0 ptq –
ż t

0
f0 ptq dt (14)

Suppose that Λ(t; θ) = tθ and τ(t; γ) = tγ , then Equation (12) becomes:

p0 ptq “
γtγ´1
?

2πtγ

´

ω´µtθ

σtγ `
θµtθ´γ

γσ

¯

exp
ˆ

´
pω´µtθq

2

2σ2tγ

˙

“
pωγ´pγ´θqµtθq

t
?

2πσ2tγ
exp

ˆ

´
pω´µtθq

2

2σ2tγ

˙

(15)

When θ = γ = 1, Equation (13) is an inverse Gaussian distribution as in Equation (6) sincer`8
0 p0 ptq dt “ 1. When Λ(t; θ) = τ(t; γ), Equation (13) is an inverse Gaussian distribution with

time-scale transformation as in Equation (7). Thus, Equation (13) is the generalized PDF of FPT which
can cover existing linear and time-scale transformation Wiener process model as its limiting cases.

Then, according to Equation (14), the reliability function that relies on S0 can be expressed as:

R0pt; S0q “ 1´F0pt; S0q (16)

2.3. Parameter Estimation of General ADT Model

In this section, we briefly provide a two-stage Maximum Likelihood Estimation (MLE) for
unknown parameters in CSADT with a single performance parameter. The unknown parameters are
in vector Θ = {θ, γ, σ, a, b}.

Suppose that a univariate CSADT with K stress levels has been conducted, Si, i = 1, . . . , K
is indicated the ith accelerated stress level, and S0 is normal operating condition. There are ni
specimens under stress level Si. Then, Xijk is the kth degradation value of unit j at the stress level
i and tijk is the corresponding measurement time, i = 1, 2, . . . , K; j = 1, 2, . . . , ni; k = 1, 2, . . . , mij.
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Let Xij “ pXij1, Xij2, . . . , Xijmijq
1 and tij “ pΛptij1; θq, Λptij2; θq, . . . , Λptijmij ; θqq1. According to the

properties of Wiener process, Xij follows a multivariate normal distribution:

Xij „ N
´

µijtij, σ2Qij

¯

(17)

where:

Qij “

»

—

—

—

—

–

τ
`

tij1; γ
˘

τ
`

tij1; γ
˘

¨ ¨ ¨ τ
`

tij1; γ
˘

τ
`

tij1; γ
˘

τ
`

tij2; γ
˘

¨ ¨ ¨ τ
`

tij2; γ
˘

...
...

. . .
...

τ
`

tij1; γ
˘

τ
`

tij2; γ
˘

¨ ¨ ¨ τ
´

tijmij ; γ
¯

fi

ffi

ffi

ffi

ffi

fl

(18)

Let µ “ pµ11, . . . , µ1n1 , . . . , µK1, . . . , µKnK q. The likelihood function of CSADT data can be easily
obtained, and the corresponding log-likelihood function is:

l pµ, σ, θ, γ|Xq “ ´ lnp2πq
2

K
ř

i“1

ni
ř

j“1
mij ´

1
2

K
ř

i“1

ni
ř

j“1
ln
ˇ

ˇσ2Qij
ˇ

ˇ´ 1
2

K
ř

i“1

ni
ř

j“1

`

Xij ´ µijtij
˘1

σ´2Q´1
ij

`

Xij ´ µijtij
˘

(19)

Taking the first partial derivatives of Equation (19) with respect to µij and σ2 and setting the
resulting equations to zero, the estimates µ̂ij and σ̂2 relying on θ and γ can be obtained as:

µ̂ij “
X1ijQ

´1
ij tij

t1ijQ
´1
ij tij

, σ̂2 “

K
ř

i“1

ni
ř

j“1

`

Xij ´ µ̂ijtij
˘1Q´1

ij
`

Xij ´ µ̂ijtij
˘

K
ř

i“1

ni
ř

j“1
mij

(20)

Substituting Equation (20) into Equation (19), the log-likelihood function is only a function of
θ and γ:

l pθ, γ|Xq “ ´ lnp2πq
2

K
ř

i“1

ni
ř

j“1
mij ´

1
2

K
ř

i“1

ni
ř

j“1
ln
ˇ

ˇσ̂2Qij
ˇ

ˇ´ 1
2

K
ř

i“1

ni
ř

j“1

`

Xij ´ µ̂ijtij
˘1

σ̂´2Q´1
ij

`

Xij ´ µ̂ijtij
˘

(21)

The estimates θ̂ and γ̂ can be obtained using the two-dimensional search [40] that maximizes
Equation (21). Then, µ̂ij and σ̂2 can be easily computed from Equation (20).

Finally, given the µ̂ijs and the corresponding stress Si, the values of â and b̂ can be easily computed
from Equation (5) by the regression analysis.

3. General ADT Modeling through Multivariate Information Fusion

3.1. Copulas

Identifying a multivariate probability distribution is difficult due to the complexity of marginal
distributions and the curse of dimensionality. Copulas simplify this process by separating the learning
of the marginal distributions from the learning of the multivariate dependence structure that links the
marginal distributions to form a joint distribution [35], as shown in Figure 1.

The following theorem provides the necessary and sufficient condition for the existence of Copula,
which elucidates the role that copulas play in describing the relationship between a multivariate
distribution and the associated univariate marginal distributions.

Theorem 1. (Sklar’s theorem [41]): Let X = (X1, . . . , XN) be a random vector with marginal distributions
F1(x1), . . . , FN(xN), and let F be their joint distribution function. Then, there exists a copula function C
such that:

F px1, . . . , xNq “ C pF1 px1q , . . . , FN pxNqq (22)
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If Fi(xi), i = 1, . . . , N, are continuous, the copula C is unique. Conversely, if F1(x1), . . . , FN(xN) are
univariate distributions, the function F defined by Equation (22) is the joint distribution function of
margins F1(x1), . . . , FN(xN).Sensors 2016, 16, 1242 7 of 17 

 
Figure 1. The multivariate dependence structure represented by a copula. 
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According to the theorem, a multivariate Copula function can be defined as follows:

Definition 1. (N-dimensional copula, or N-copula) [36]: An N-dimensional copula is a function C from
IN = [0,1]N to I with the following properties:

(1) Grounded: for every u = (u1, . . . , uN) in IN, C(u) = 0 if at least one coordinate of u is 0;
(2) Uniform margins: if all coordinates of u are 1 except uk, then:

Cpuq “ Cp1, . . . , 1, uk, 1, . . . , 1q “ uk (23)

(3) N-increasing: for each hyperrectangle B “
N
Π

i“1
rui, vis Ď r0, 1sN , the C-volume of B is non-negative:

ż

B
dCpru, vsq “

ÿ

zPˆN
i“1tui ,viu

p´1qNpzqCpzq ě 0 (24)

where N(z) = #{k: zk = uk}.

The density of a copula function C is denoted by c, which may be achieved by taking partial
derivative as:

c pu1, . . . , uNq “
BNC pu1, . . . , uNq

Bu1 . . . BuN
@u “ pu1, . . . , uNq P IN (25)

Furthermore, the joint density function corresponding to distribution function F(x1, . . . , xN) can
be calculated by:

f px1, . . . , xNq “ c pF1 px1q , . . . , FN pxNqq

N
ź

n“1

fn pxnq (26)

where fn(¨), n = 1, . . . , N, is the PDF of marginal distribution Fn(¨).
Copulas have several attractive properties [42]. First, copulas provide a convenient way to model

the marginal distributions and the joint dependence structure separately. Second, they are invariant
under increasing and continuous transformations. Third, they have no constraints on the univariate
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marginal distribution. Because of these advantages, copulas are chosen to emphasize and measure the
dependence among multiple degradation processes in this paper.

Table 1 lists several commonly used multivariate copula functions, where u1, . . . , uN denote
univariate marginal distributions. The Akaike Information Criterion (AIC) will be employed to
implement goodness-of-fit test and quantitatively select the most suitable copula type from several
candidate copulas. In particular, the AIC is defined as:

AIC “ 2k´ 2lnL (27)

where k is the number of estimated parameters in the model, and L is the maximum likelihood value
for the model. Given a set of candidate copulas for the multivariate accelerated degradation processes,
the preferred copula function is the one with the minimum AIC value.

Table 1. Summary of some multivariate copulas.

Copulas C(u1,u2, . . . ,uN) Parameter

Gaussian Copula
Φρ

”

Φ´1 pu1q , Φ´1 pu2q , . . . , Φ´1 puNq
ı

1
ρ P p´1, 1q

Student’s t-Copula tρ,v

”

t´1
v pu1q , t´1

v pu2q , . . . , t´1
v puNq

ı

2 ρ P p´1, 1q , ν ą 2

Clayton Copula
ˆ

N
ř

i“1
u´δ

i ´ N` 1
˙´1{δ

δ ą 0

Frank Copula ´δ´1log
"

1`
ΠN

i“1rexpp´δuiq´1s

rexpp´δq´1sN´1

*

δ P p´8,8qz t0u

δ ą 0 f or N ě 3

Joe Copula 1´
!

1´ΠN
i“1

”

1´ p1´ uiq
δ
ı)1{δ

δ P r1,8q

1 Φ is the distribution function of a standard normal random variable, Φρ is the N-variate standard normal
distribution with mean vector 0 and covariance matrix ρ; 2 tυ is a univariate t distribution with υ degrees of
freedom, tρ ,υ is the multivariate Student’s t distribution with a correlation matrix ρ with υ degrees of freedom.

3.2. Multivariate Dependent Accelerated Degradation Model

In this section, a multivariate accelerated degradation model is presented to estimate the system
reliability under the normal operating conditions. First, the CSADT data of each performance
characteristic is modeled by a general Wiener process (see Section 2.2), and general accelerated
degradation models for multiple performance parameters are established respectively. Then, copulas
are utilized to describe the dependence among multiple performance parameters and conduct
multi-parameters degradation information fusion.

To analyze the multivariate CSADT data, the following assumptions are made:

A1. The degradation measurements of all specimens are taken at the same time.
A2. A specimen is considered to be failed if one of the features reaches its corresponding failure

threshold for the first time.
A3. The degradation processes of all performance parameters in CSADT can be depicted by the

general Wiener process.
A4. For a dependent system with multiple performance parameters, the dependency among the

multiple performance parameters can be characterized by copulas.

Suppose that a system has N degradation measures. Let Xp(t), p = 1, 2, . . . , N denote the
degradation process of the pth performance parameter at normal operating condition S0. According to
above assumptions, the system is failed if any one performance parameter reaches its corresponding
failure threshold represented by Dp. Let the failure time of the pth characteristic index be Tp, then the
system lifetime is T = min(T1, . . . , TN). So, the system reliability under S0 can be expressed as:

Rptq “ PpT ą tq “ PpT1 ą t, . . . , TN ą tq “ PpX1 ptq ă D1, . . . , XN ptq ă DNq (28)
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Apparently, if the multiple degradation measures are independent, Equation (28) becomes:

Rptq “ P pX1ptq ă D1q ˆ ¨ ¨ ¨ ˆ P pXNptq ă DNq “ R1ptq ˆ ¨ ¨ ¨ ˆ RNptq (29)

where Rp(t), p = 1, 2, . . . , N is the reliability function associated with the pth performance parameter
under S0 as defined in Equation (16).

However, the multiple performance parameters are usually dependent. In order to address the
dependency among multiple degradation processes, a copula function can be applied, and the best
model can be selected based on AIC. Essentially, the system reliability at time t under S0 can be
performed as [19,26,27,30]:

Rptq “ CpR1ptq, R2ptq, . . . , RNptq; δq (30)

where δ is the parameter set of a family of copulas.

3.3. Statistical Inference

Consider a copula-based multivariate distribution for random vector X with PDF:

f pX; Θ1, . . . , ΘN ,δq “ c pF1 pX1; Θ1q , . . . , FN pXN ; ΘNq ;δq
N
ź

p“1

fp
`

Xp; Θp
˘

(31)

where Fp(; Θp) and fp(; Θp), p = 1, . . . ,N are CDF and PDF of the pth marginal distribution with
parameter set Θp = {θp, γp, σp, ap, bp}, c(;δ) is the density of copula function C(;δ) with parameter set δ.

For a sample of size n, the full log-likelihood function can be expressed as:

lnL pΘ1, . . . , ΘN ,δq “
n
ÿ

i“1

lnc pF1 pX1i; Θ1q , . . . , FN pXNi; ΘNq ;δq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Dependence structure LC

`

N
ÿ

p“1

n
ÿ

i“1

fp
`

Xpi; Θp
˘

looooooooooomooooooooooon

Marginals
N
ř

p“1
Lp

(32)

Clearly, the parameter set Ω = {Θ1, . . . , ΘN, δ} can be estimated by maximizing Equation (32).
However, as the dimension of variables increases, it is difficult to obtain the optimal solution.

Joe [35] proposed a computationally attractive alternative to MLE, called Inference Functions
for Margins (IFM) method, to estimate the parameters in multivariate copula models. The idea is to
decompose Equation (32) into two parts: the contribution, denoted by LC, from the dependence
structure in data represented by copula C, and the contributions, denoted by Lp, p = 1, . . . , N,
from each marginal distribution. Then, the approach estimates the parameters of marginal distributions
and the copula in two stages. In the first stage, the parameters of each marginal distribution are
estimated from the corresponding Lp. In the second stage, the copula’s parameters are obtained by
maximizing LC using the marginal distribution parameters estimated in the first stage.

In this paper, the IFM method is used to estimate the parameters Ω = {Θ1, . . . , ΘN, δ} of the
copula-based multivariate CSADT model in the following two stages.

‚ Stage 1. Parameter estimation of marginal distributions.

For the CSADT data of each degradation measure, the parameter estimation method given
in Section 2.3 can be used to estimate the parameter set Θp = {θp, γp, σp, ap, bp} of each marginal
distribution by maximizing the log-likelihood function. Then, assuming that the failure threshold of
the pth performance characteristic is Dp, p = 1, 2, . . . , N, we can respectively get the reliability functions
of all performance parameters under normal operating condition S0 using Equation (16).
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‚ Stage 2. Parameter estimation of copulas.

Using the first-stage estimate Θ̂p, the copula parameter set δ can be estimated by maximizing the
copula likelihood contribution:

δ̂ “ arg max
n
ÿ

i“1

lnc
`

R1pX1i; Θ̂1q, ¨ ¨ ¨ , RNpXNi; Θ̂Nq;δ
˘

(33)

4. Case Study

In this section, a case study is used to demonstrate the validity and estimation performance of the
proposed copula-based multivariate CSADT model and computational method.

4.1. Problem Description

The tuner is a kind of microwave electronical assembly, which is required to have a long lifetime
and high reliability. Previous failure analysis shows that temperature is the major factor that causes
tuner output degradation. To quickly evaluate the lifetime and reliability of the tuner, a temperature
CSADT with four stress levels was conducted. Six performance parameters of each tuner were
measured by a computerized measuring system, including the power gain GA, GB, and GC, the noise
figure NA, NB and NC, where G denotes power gain, N means noise figure, A, B and C indicate
different directions. Figure 2 shows a sample from one tuner.
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For all performance parameters, the sampling interval was ∆t = 5 h. The other settings of the
test are shown in Table 2, where S1, S2, S3, and S4 are the accelerated stress levels, and the normal
operating condition is S0 = 25 ˝C. The accelerated degradation data of all performance parameters
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Figure 7 gives a matrix of plots showing Kendall’s rank correlations among pairs of performance
parameters of a specimen. The diagonal elements show the histograms of different degradation paths,
and the off-diagonal elements are the scatter plots of pairs of performance parameters along with
the Kendall’s rank correlation coefficients. From Figure 7, one can see that all pairs of degradation
measures are significantly correlated. Therefore, in order to achieve more accurate and practical
evaluation results of the tuner’s CSADT, it is worth considering the dependence among the multiple
degradation processes.
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4.2. Univariate ADT Models with General Wiener Process

First of all, the original degradation data of GA, GB, and GC are transformed by:

yi “
x0 ´ xi

x0
(34)

where x0 and xi are the initial and ith degradation measurements.
Similarly, the original degradation data of NA, NB, and NC are also transformed by:

yi “
xi ´ x0

x0
(35)

Then, the proposed general Wiener process model, i.e., Equation (3), is used to fit the CSADT
data of each performance parameter separately. For convenience and without loss of generality,
the formulas Λ(t; θ) = tθ and τ(t; γ) = tγ are used in this paper according to the behavior of the
degradation over time. It is important to mention that although we only focus on a combination of
Λ(t; θ) = tθ and τ(t; γ) = tγ, other forms of Λ(t; θ) and τ(t; γ) can be adopted without extra theoretical
difficulties, if applied [16]. The estimates of univariate ADT model parameters for each performance
characteristic are obtained by the method provided in Section 2.3 and are listed in Table 3.

Table 3. Estimations of the univariate ADT model parameters.

Parameters GA GB GC NA NB NC

θ̂ 1.6713 1.6648 1.6793 1.6136 1.6470 1.7285
γ̂ 1.0878 0.9815 1.0304 0.9730 0.9869 0.9861
σ̂ 0.1948 0.2835 0.2272 0.9380 0.8243 0.7258
â 9.4654 11.6371 10.4689 11.5335 9.6690 12.7805
b̂ ´6234.05 ´6956.20 ´6599.09 ´6633.39 ´6152.89 ´7400.12

From Table 3, it can be seen that the estimate of γ for each performance parameter is close to 1,
which indicates that the proposed model could be simplified. Simplify the univariate ADT model with
the assumption of γ = 1, i.e., τ(t; γ) = t. The estimates of the simplified model (SM) parameters for
each degradation measure are listed in Table 4.

Table 4. Estimations of the simplified univariate ADT model parameters (γ “ 1).

Parameters GA GB GC NA NB NC

θ̂ 1.6810 1.6648 1.6805 1.6152 1.6455 1.7286
σ̂ 0.2625 0.2662 0.2520 0.8559 0.7886 0.6922
â 9.4667 11.6342 10.4754 11.5638 9.6730 12.7771
b̂ ´6257.40 ´6955.08 ´6604.29 ´6647.50 ´6150.92 ´7399.13

To justify the use of the full model (FM) or the simplified model (assume γ = 1) for the
univariate ADT data of each performance parameter, the likelihood ratio (LR) test [43] is implemented.
The test statistic distribution has 1 degree of freedom, and the significance level is 5%. The result of the
likelihood ratio test is shown in Table 5.

Table 5. Decision and p-value of the likelihood ratio test.

Contents GA GB GC NA NB NC

logL_FM ´1819.7 ´1852.3 ´1738.8 ´4255.8 ´4087.3 ´3819.0
logL_SM ´1824.0 ´1852.5 ´1739.4 ´4256.1 ´4087.4 ´3819.1
p-value 0.0034 0.5271 0.2733 0.4386 0.6547 0.6547
statstic 8.6 0.4 1.2 0.6 0.2 0.2

h 1 0 0 0 0 0
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Since the critical value is χ2
1,0.05 “ 3.84, we accept the assumption of γ = 1 except for GA.

While, the p-value of GA is close to 0, which also indicates that there is strong evidence suggesting
that the full model fits the GA data better than the simplified model. Hence, the proposed general
Wiener process model with τ(t; γ) = tγ is used to fit the CSADT data of GA, and the simplified model
(assume γ = 1) is used to fit the other performance parameters of tuner.

For the failure thresholds of degradation measures, it is assumed that the tuner fails when one
of the power gains, i.e., GA, GB, and GC, drops to 60% of its initial value. Meanwhile, the tuner
would also fail if one of the noise figures, i.e., NA, NB, and NC, increases to 100% of its initial value.
According to Equation (16), the marginal reliability functions of six performance parameters at the
normal stress can be calculated, as shown in Figure 8. From Equation (29), we also estimate the system
reliability of the tuner at the normal operating condition without considering the dependence among
multiple performance parameters, which is displayed in Figure 8. From Figure 8, one can see that the
tuner’s reliability is far less than the marginal reliabilities of individual degradation processes.Sensors 2016, 16, 1242 14 of 17 
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4.3. Multivariate Accelerated Degradation Model with Copulas

Based on the marginal reliability functions, the copula method is applied to fit the dependent
multivariate ADT data. To select the best copula, the AIC is used when comparing candidate copulas.
Five widely used multivariate copulas are selected to fit the joint distribution of multiple degradation
processes. The results of parameter estimation and AIC values are summarized in Table 6, and the
joint reliability curves of tuner with different copulas are shown in Figure 9.
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Table 6. Goodness-of-Fit for the copulas.

Copulas Parameter Estimation AIC Ranking

Gaussian ρ1 1 21,783 5
Student’s t [ρ2 2, 98.106] ´5613 2

Clayton 2.15193 2910 4
Frank 9.3625 ´13,141 1

Joe 3.165 1634 3

1 ρ1“

»

—

—

—

—

–

1 0.97279 0.98800 0.96986 0.97379 0.96522
0.97279 1 0.97609 0.99985 0.99997 0.99916
0.98800 0.97609 1 0.97288 0.97668 0.96844
0.96986 0.99985 0.97288 1 0.99977 0.99967
0.97379 0.99997 0.97668 0.99977 1 0.99893
0.96522 0.99916 0.96844 0.99967 0.99893 1

fi

ffi

ffi

ffi

ffi

fl

; 2 ρ2“

»

—

—

—

—

–

1 0.59714 0.88118 0.35281 0.39528 0.34503
0.59714 1 0.73995 0.7129 0.74043 0.85853
0.88118 0.73995 1 0.36259 0.40725 0.44296
0.35281 0.7129 0.36259 1 0.99863 0.94762
0.39528 0.74043 0.40725 0.99863 1 0.95163
0.34503 0.85853 0.44296 0.94762 0.95163 1

fi

ffi

ffi

ffi

ffi

fl

.

As can be seen in Table 6, the multivariate ADT model with Frank copula has the smallest AIC.
In other words, Frank copula may best describe the dependence among the multiple accelerated
degradation processes. On the other hand, the ADT model with the Gaussian copula has the largest
AIC, and thus is not adequate to describe the dependency between the two performance parameters
by linear correlation [28].

Finally, the s-dependent system reliability of tuner is compared with that obtained under an
s-independent assumption. From Figure 10, one can see that the s-dependent reliability curve is higher
than s-independent reliability curve. In other words, making the s-independent assumption may
be under-estimate the system reliability. This is not uncommon in many engineering applications.
Therefore, it is more reasonable to use the proposed method in product reliability estimation when the
strong dependency among multiple performance parameters exhibits.
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5. Conclusions

In this paper, we have proposed a multivariate ADT model based on general Wiener process
and copulas for a system with s-dependent nonlinear degradation processes. We first introduced
a general Wiener process to describe univariate accelerated degradation process and provided the
corresponding parameter estimation method. This model can cover the commonly used linear and
time-scale transformed Wiener processes as its limiting cases. Then, the copulas were employed to
develop a more flexible s-dependent multivariate ADT model, where the dependency among different
degradation processes is linked by the copulas. The IFM method is applied to estimate the unknown
parameters of copula and marginal distributions, and the AIC is used as the criterion to choose the
best copula from several candidates. Finally, the case study validates the effectiveness and superiority
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of the general multivariate ADT model on solving real-world reliability engineering problems.
It provides a useful tool for the reliability evaluation and the development of maintenance strategies
for products with multiple performance parameters. This is also a new approach for information
fusion in engineering practice. Our future research will be focused on the development of a model for
analyzing multiple dependent nonlinear step-stress ADT data.
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Abbreviations

The following abbreviations are used in this manuscript:

ADT Accelerated degradation testing
SLD Super luminescent diode
MOSFET Metal oxide semiconductor field effect transistor
IG Inverse Gaussian
PDF Probability density function
CSADT Constant-stress accelerated degradation testing
SSADT Step-stress accelerated degradation testing
FPT First passage time
CDF Cumulative distribution function
MLE Maximum likelihood estimation
AIC Akaike Information Criterion
IFM Inference functions for margins

References

1. Ye, Z.S.; Xie, M. Stochastic modelling and analysis of degradation for highly reliable products. Appl. Stoch.
Model. Bus. 2015, 31, 16–32.

2. Yang, G. Environmental-stress-screening using degradation measurements. IEEE Trans. Reliab. 2002,
51, 288–293.

3. Lin, Y.H.; Li, Y.F.; Zio, E. Integrating random shocks into multi-State physics models of degradation processes
for component reliability assessment. IEEE Trans. Reliab. 2015, 64, 154–166. [CrossRef]

4. Thomas, E.V.; Bloom, I.; Christophersen, J.P.; Battaglia, V.S. Statistical methodology for predicting the life of
lithium-ion cells via accelerated degradation testing. J. Power Sources 2008, 184, 312–317. [CrossRef]

5. Wang, L.Z.; Pan, R.; Li, X.Y.; Jiang, T.M. A Bayesian reliability evaluation method with integrated accelerated
degradation testing and field information. Reliab. Eng. Syst. Saf. 2013, 112, 38–47. [CrossRef]

6. Yang, Z.; Chen, Y.X.; Li, Y.F.; Zio, E.; Kang, R. Smart electricity meter reliability prediction based on
accelerated degradation testing and modeling. Int. J. Electr. Power Energy Syst. 2014, 56, 209–219. [CrossRef]

7. Santini, T.; Morand, S.; Fouladirad, M.; Phung, L.V.; Miller, F.; Foucher, B.; Grall, A.; Allard, B. Accelerated
degradation data of SiC MOSFETs for lifetime and Remaining Useful Life assessment. Microelectron. Reliab.
2014, 54, 1718–1723. [CrossRef]

8. Liao, H.; Tian, Z. A framework for predicting the remaining useful life of a single unit under time-varying
operating conditions. IIE Trans. 2013, 45, 964–980. [CrossRef]

9. Whitmore, G.; Schenkelberg, F. Modelling accelerated degradation data using Wiener diffusion with a time
scale transformation. Lifetime Data Anal. 1997, 3, 27–45. [CrossRef] [PubMed]

10. Liu, L.; Li, X.Y.; Jiang, T.M.; Sun, F.Q. Utilizing accelerated degradation and field data for life prediction of
highly reliable products. Qual. Reliab. Eng. Int. 2015. [CrossRef]

11. Ye, Z.S.; Chen, N.; Shen, Y. A new class of Wiener process models for degradation analysis. Reliab. Eng.
Syst. Saf. 2015, 139, 58–67. [CrossRef]

12. Elwany, A.; Gebraeel, N. Real-time estimation of mean remaining life using sensor-based degradation
models. J. Manuf. Sci. Eng. Trans. ASME 2009, 131, 051005. [CrossRef]

http://dx.doi.org/10.1109/TR.2014.2354874
http://dx.doi.org/10.1016/j.jpowsour.2008.06.017
http://dx.doi.org/10.1016/j.ress.2012.09.015
http://dx.doi.org/10.1016/j.ijepes.2013.11.023
http://dx.doi.org/10.1016/j.microrel.2014.07.082
http://dx.doi.org/10.1080/0740817X.2012.705451
http://dx.doi.org/10.1023/A:1009664101413
http://www.ncbi.nlm.nih.gov/pubmed/9384624
http://dx.doi.org/10.1002/qre.1935
http://dx.doi.org/10.1016/j.ress.2015.02.005
http://dx.doi.org/10.1115/1.3159045


Sensors 2016, 16, 1242 17 of 18

13. Park, C.; Padgett, W.J. Stochastic degradation models with several accelerating variables. IEEE Trans. Reliab.
2006, 55, 379–390. [CrossRef]

14. Gebraeel, N.Z.; Lawley, M.A.; Li, R.; Ryan, J.K. Residual-life distributions from component degradation
signals: A Bayesian approach. IIE Trans. 2005, 37, 543–557. [CrossRef]

15. Si, X.S.; Wang, W.B.; Hu, C.H.; Zhou, D.H.; Pecht, M.G. Remaining useful life estimation based on a nonlinear
diffusion degradation process. IEEE Trans. Reliab. 2012, 61, 50–67. [CrossRef]

16. Wang, X.L.; Balakrishnan, N.; Guo, B. Residual life estimation based on a generalized Wiener degradation
process. Reliab. Eng. Syst. Saf. 2014, 124, 13–23. [CrossRef]

17. Wang, X.L.; Jiang, P.; Guo, B.; Cheng, Z.J. Real-time reliability evaluation with a general Wiener process-based
degradation model. Qual. Reliab. Eng. Int. 2014, 30, 205–220. [CrossRef]

18. Peng, W.; Li, Y.F.; Yang, Y.J.; Zhu, S.P.; Huang, H.Z. Bivariate analysis of incomplete degradation observations
based on inverse Gaussian processes and copulas. IEEE Trans. Reliab. 2016, 65, 624–639. [CrossRef]

19. Wang, Y.P.; Pham, H. Modeling the dependent competing risks with multiple degradation processes and
random shock using time-varying copulas. IEEE Trans. Reliab. 2012, 61, 13–22. [CrossRef]

20. Kumar, S.; Pecht, M. Modeling approaches for prognostics and health management of electronics. Int. J.
Perform. Eng. 2010, 6, 467–476.

21. Huang, W.; Askin, R.G. Reliability analysis of electronic devices with multiple competing failure modes
involving performance aging degradation. Qual. Reliab. Eng. Int. 2003, 19, 241–254. [CrossRef]

22. Crowder, M.J. Classical Competing Risks, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001.
23. Wang, P.; Coit, D.W. Reliability prediction based on degradation modeling for systems with multiple

degradation measures. In Proceedings of 2004 Annual Reliability and Maintainability Symposium,
Alexandria, VA, USA, 26–29 January 2004; pp. 302–307.

24. Lu, S.; Lu, H.; Kolarik, W.J. Multivariate performance reliability prediction in real-time. Reliab. Eng. Syst. Saf.
2001, 72, 39–45. [CrossRef]

25. Pan, Z.Q.; Balakrishnan, N. Reliability modeling of degradation of products with multiple performance
characteristics based on gamma processes. Reliab. Eng. Syst. Saf. 2011, 96, 949–957. [CrossRef]

26. Sari, J.K.; Newby, M.J.; Brombacher, A.C.; Tang, L.C. Bivariate constant stress degradation model:
LED lighting system reliability estimation with two-stage modelling. Qual. Reliab. Eng. Int. 2009, 25,
1067–1084. [CrossRef]

27. Pan, Z.Q.; Balakrishnan, N.; Sun, Q. Bivariate Constant-stress sccelerated degradation model and inference.
Commun. Stat. Simul. C 2011, 40, 259–269. [CrossRef]

28. Pan, Z.Q.; Balakrishnan, N.; Sun, Q.; Zhou, J.L. Bivariate degradation analysis of products based on Wiener
processes and copulas. J. Stat. Comput. Simul. 2013, 83, 1316–1329. [CrossRef]

29. Liu, Z.Y.; Ma, X.B.; Yang, J.; Zhao, Y. Reliability modeling for systems with multiple degradation processes
using inverse Gaussian process and copulas. Math. Probl. Eng. 2014, 2014, 1–10. [CrossRef]

30. Hao, H.; Su, C. Bivariate nonlinear diffusion degradation process modeling via copula and MCMC.
Math. Probl. Eng. 2014, 2014, 510929. [CrossRef]

31. Hao, H.; Su, C.; Li, C. LED lighting system reliability modeling and inference via random effects Gamma
process and copula function. Int. J. Photoenergy 2015, 2015, 243648. [CrossRef]

32. Hong, H.P.; Zhou, W.; Zhang, S.; Ye, W. Optimal condition-based maintenance decisions for systems with
dependent stochastic degradation of components. Reliab. Eng. Syst. Saf. 2014, 121, 276–288. [CrossRef]

33. Xi, Z.M.; Jing, R.; Wang, P.F.; Hu, C. A copula-based sampling method for data-driven prognostics.
Reliab. Eng. Syst. Saf. 2014, 132, 72–82. [CrossRef]

34. Kat, H.M. The dangers of using correlation to measure dependence. J. Altern. Invest. 2003, 6, 54–58.
[CrossRef]

35. Joe, H. Multivariate Models and Multivariate Dependence Concepts, 1st ed.; CRC Press: Boca Raton, FL,
USA, 1997.

36. Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Springer Science & Business Media: New York, NY,
USA, 2007.

37. Nelson, W.B. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, 2nd ed.; John Wiley & Sons:
Hoboken, NJ, USA, 2004.

38. Escobar, L.A.; Meeker, W.Q. A review of accelerated test models. Stat. Sci. 2006, 21, 552–577. [CrossRef]

http://dx.doi.org/10.1109/TR.2006.874937
http://dx.doi.org/10.1080/07408170590929018
http://dx.doi.org/10.1109/TR.2011.2182221
http://dx.doi.org/10.1016/j.ress.2013.11.011
http://dx.doi.org/10.1002/qre.1489
http://dx.doi.org/10.1109/TR.2015.2513038
http://dx.doi.org/10.1109/TR.2011.2170253
http://dx.doi.org/10.1002/qre.524
http://dx.doi.org/10.1016/S0951-8320(00)00102-2
http://dx.doi.org/10.1016/j.ress.2011.03.014
http://dx.doi.org/10.1002/qre.1022
http://dx.doi.org/10.1080/03610918.2010.534227
http://dx.doi.org/10.1080/00949655.2012.658805
http://dx.doi.org/10.1155/2014/829597
http://dx.doi.org/10.1155/2014/510929
http://dx.doi.org/10.1155/2015/243648
http://dx.doi.org/10.1016/j.ress.2013.09.004
http://dx.doi.org/10.1016/j.ress.2014.06.014
http://dx.doi.org/10.3905/jai.2003.319091
http://dx.doi.org/10.1214/088342306000000321


Sensors 2016, 16, 1242 18 of 18

39. Bhattacharyya, G.K.; Fries, A. Fatigue failure models—Birnbaum-saunders vs. inverse gaussian.
IEEE Trans. Reliab. 1982, 31, 439–441. [CrossRef]

40. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex
method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

41. Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231.
42. Kim, D.; Kim, J.M.; Liao, S.M.; Jung, Y.S. Mixture of D-vine copulas for modeling dependence. Comput. Stat.

Data Anal. 2013, 64, 1–19. [CrossRef]
43. Godfrey, L.G. Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches,

1st ed.; Cambridge University Press: Cambridge, UK, 1991.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TR.1982.5221421
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1016/j.csda.2013.02.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	General Univariate Accelerated Degradation Model 
	Stress-Acceleration Model 
	Accelerated Degradation Model 
	An ADT Model Based on the General Wiener Process 
	Derivation of Failure Time Distribution for Model M0 

	Parameter Estimation of General ADT Model 

	General ADT Modeling through Multivariate Information Fusion 
	Copulas 
	Multivariate Dependent Accelerated Degradation Model 
	Statistical Inference 

	Case Study 
	Problem Description 
	Univariate ADT Models with General Wiener Process 
	Multivariate Accelerated Degradation Model with Copulas 

	Conclusions 

