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Abstract: Accelerated degradation testing (ADT) is an efficient tool to conduct material service
reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic
process models are mainly for linear or linearization degradation paths. However, those methods
are not applicable for the situations where the degradation processes cannot be linearized. Hence, in
this paper, a general ADT model based on the Wiener process is proposed to solve the problem for
accelerated degradation data analysis. The general model can consider the unit-to-unit variation and
temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT
analyses with single or multiple acceleration variables. The statistical inference is given to estimate
the unknown parameters in both constant stress and step stress ADT. The simulation example and
two real applications demonstrate that the proposed method can yield reliable lifetime evaluation
results compared with the existing linear and time-scale transformation Wiener processes in both
linear and nonlinear ADT analyses.

Keywords: accelerated degradation testing; Wiener process; reliability; uncertainty; unit-to-unit
variation

1. Introduction

Due to the highly competitive market, nowadays many products are requested to have long
lifespans and high reliability. In order to quantify their lifetime and reliability characteristics,
accelerated degradation testing (ADT) is conducted under harsh environmental conditions to accelerate
the performance degradation and obtain sufficient data for reliability analysis in a short time
with a limited budget [1–3]. Thus, it has been widely used in many engineering applications,
e.g., batteries [4,5], light emitting diodes (LEDs) [6,7], etc.

The aim of statistical analysis of ADT data is to extrapolate product characteristics that are of
interest at normal stress levels which, in general, comes from two directions. In the time direction, the
deterministic degradation trend varying with time should be modeled at all accelerated levels for linear
or nonlinear scenarios, i.e., the degradation model. In the stress direction, the relationship between
acceleration variables and degradation-related parameters need to be established based on physical
mechanisms or empirical experience, i.e., an acceleration model which will be used for the lifetime and
reliability extrapolation at the normal stress level. In addition, the uncertainties from the temporal
variation of the degradation process and unit-to-unit variation from the inherent heterogeneity of the
tested products should be properly considered when analyzing ADT data. In the literature, two classes
of models are widely used for degradation modeling, i.e., degradation path models [8,9] and stochastic
process models [10–12], with examples for acceleration models including the Arrhenius model for
temperature stress and the Eyring model for voltage stress [3,8,13]. With different combinations of
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degradation and acceleration models from these two directions, extensive work has been given to the
statistical analysis of ADT data.

Since the stochastic process models can describe the temporal variation of the degradation process
in a finite time interval, more attention has been given to them. In linear ADT analysis with a single
acceleration variable, Park and Padgett [14] proposed two accelerated degradation models based on
geometric Brownian motion and the Gamma process, and analyzed the constant stress ADT (CSADT)
data of carbon-film resistors under temperature stress. Pan and Balakrishnan [15] proposed two linear
modeling methods based on the Wiener and Gamma processes, and simulated one step stress ADT
(SSADT) data with the Arrhenius model for model verification. Wang, et al. [16] used a linear Wiener
process to model the degradation process for reliability evaluation of products with the integrated
ADT and field information. In the cases with multiple acceleration variables, Liao and Elsayed [17]
selected Brownian motion with a linear drift as the degradation model to infer the field reliability and
applied it to LED CSADT data with electric current and ambient temperature.

In reality, the degradation processes of some products may experience nonlinear due to the inner
deterioration mechanism of the product material, e.g., crack growth. In order to analyze this kind of
ADT data, a time-scale transformation is generally used based on linear stochastic process models
with a single acceleration variable. To our knowledge, Whitmore and Schenkelberg [11] were the
first to accomplish this work in the area of ADT and proposed a time-scale transformation Wiener
process model for the cable CSADT data analysis under temperature stress. A similar transformation
is introduced in the Gamma process [10] and inverse Gaussian process models [12] for ADT modeling.
In consideration of the unit-to-unit variation, Tang, et al. [18] incorporated a random variable into the
acceleration model to capture the random effect and also used the time-scale transformation Wiener
process model for nonlinear LED CSADT data analysis under electric current stress. However, the
problem of using time-scale transformation is the implied assumption that the degradation processes
can be linearized. It may not be suitable for nonlinear ADT analysis where the degradation paths
cannot be linearized. In traditional degradation analysis, Wang, et al. [19,20] proposed a general
Wiener model which utilizes two time-scale parameters to extend the above transformation and can
solve the nonlinear degradation modeling to a greater extent. In our previous work [21], we introduced
this model into ADT analysis, but without the consideration of unit-to-unit variation.

Based on the above research, it can be concluded that the existing methods partially solve
the modeling problems of some ADT data with their applications in both the time and stress
directions. However, more efforts are still needed, especially for nonlinear ADT modeling with
multiple acceleration variables. Therefore, in this paper, a general ADT model is proposed to fill this
gap based on the Wiener process. The general ADT model will consider the unit-to-unit variation and
temporal variation of the degradation processes, and is suitable for both linear and nonlinear ADT
analyses with single or multiple acceleration variables, simultaneously.

The rest of this paper is organized as follows: Section 2 introduces the general ADT model and
derives its failure time distribution under the given stress level; Section 3 deals with the statistical
inference of unknown parameters in the proposed model for both CSADT and SSADT; Section 4 uses
one simulation example and two real applications to illustrate the superiority of the proposed method
over other existing Wiener processes for both linear and nonlinear ADT analyses; and some concluding
remarks are given in Section 5.

2. The General ADT Model

2.1. Models

The general ADT model based on the Wiener process is given by:

M0 : X (t) = µ (S; η)Λ (t; θ) + σB (τ (t; γ)) , (1)
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where X(t) is the performance degradation value of product at time t, σ denotes the diffusion coefficient,
which is assumed to be constant, B(.) is the standard Brownian motion to describe the temporal
variation of the degradation process, Λ(.) and τ(.) are the monotonous functions with time, θ and γ

are the time-scale parameters to present the linear or nonlinear modeling. Without loss of generality,
the initial degradation value is set to be zero. If not, X(t) = X(t) − X(0) will be used.

For the drift coefficient µ(S;η), it is assumed to be dependent with the acceleration variable S as
the acceleration model. The acceleration model for both single and multiple acceleration variables is
denoted as:

µ (S; η) = η0

p

∏
v=1

[φ (sv)]
ηv . (2)

If there are p acceleration variables, then S = [s1, s2, . . . , sp] and η = [η0, η1, . . . , ηp], where sv

is the vth acceleration stress type and ηv is the vth constant coefficient. While φ(.) is the continuous
function of acceleration variables si, i = 1, 2, . . . , p. For instance, if φ(s) = exp(1/s), Equation (2)
presents the Arrhenius relationship (exponential type); while if φ(s) = s, Equation (2) presents the
Eyring relationship (power rule type).

Considering the unit-to-unit variation due to the inherent heterogeneity among the tested
products, the drift coefficients µ(S;η) are varied from product to product. Hence, we consider it
as a random variable to present this kind of variation. Similar methods can be found in Peng and
Tseng [22], Wang [23], and Si, et al. [24]. Here, for simplicity, the coefficient η0 in Equation (2) is assumed
to follow a normal distribution with mean value a and variance b, i.e., η0 ~N(a, b). The parameter
values should be such that Pr(µ(S;η) < 0) is nearly zero to avoid negative values existing in the drift
coefficient of Equation (1). Thus, if such a random effect is not considered (b = 0), Equation (2) will
become the traditional acceleration model in Park and Padgett [25].

The attraction of Equation (1) is that it can cover two commonly used Wiener processes in the
ADT field as its limiting cases, which are:

• Case 1. If Λ(t;θ) = t and τ(t;γ) = t, Equation (1) is simplified to the traditional linear Wiener
process, which is widely used for ADT analysis, see [16,25–27] and so on:

M1 : X (t) = µ (S; η) t + σB (t) . (3)

• Case 2. If Λ(t;θ) = τ(t;γ), Equation (1) reduces to a time-scale transformation Wiener process as
in [11,18]:

M2 : X (t) = µ (S; η) τ (t; γ) + σB (τ (t; γ)) . (4)

Herein, if the time-scale transformation z = τ(t;γ) is used in Equation (4), then Case 2 will become
a similar form of Case 1 as Y(z) = µ(S;η)z + σB(z).

Furthermore, if the acceleration variables in Equation (2) are set to be at normal stress levels where
µ(S;η) ~N(µ0, σ2

0 ), Equation (1) and its limiting cases (i.e., Equations (3) and (4)) are the degradation
models used in traditional degradation analysis [19,20,28].

As described above, the general ADT model in Equation (1) can present the uncertainties from
the unit-to-unit variation (b 6= 0) and temporal variation of the degradation process, and can be used
in the situations with single (p = 1) and multiple (p > 1) acceleration variables for linear and nonlinear
degradation processes. For clarity, Equation (1) is named M0, while Equations (3) and (4) are M1 and
M2. Since model M1 and M2 are widely used in the ADT field, in this paper, we concentrate on the
comparison of M1 and M2 with M0 to verify the effectiveness of the proposed model for both linear
and nonlinear ADT analyses.

For the evaluation of lifetime and reliability, the probability distribution function (PDF) of the
failure time should be given, which will be derived in the following section.
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2.2. Derivation of the Failure Time Distribution under the Given Stress Level

Although ADT is implemented at accelerated stress levels, the lifetime and reliability evaluation
are conducted at the given normal stress level S0 = [s(0)1 , s(0)2 ,· · · , s(0)p ], where s(0)v is the vth
acceleration stress type under normal level. Thus, the drift coefficient µ(S0;η) follows a normal
distribution. Therefore, we simplify the notation of µ(S0;η) to µ in the derivation of the failure time

distribution. From Equation (2), it is known that µ ~N(µ0, σ2
0 ), where µ0 = a ·∏p

v=1

[
φ
(

s(0)v

)]ηv
and

σ2
0 = b ·∏p

v=1

[
φ
(

s(0)v

)]2ηv
.

In general, the failure time is defined as the time when degradation path X(t) first exceeds the
failure threshold ω, i.e., the first passage time (FPT):

T = inf {t : X (t) ≥ w} . (5)

Let a time transformation z = τ(t;γ); thus t = τ−1(z;γ). We define ρ(z;θ) = Λ(τ−1(z;γ);θ).
So, Equation (1) becomes [20]:

Y (z) = µρ (z; θ) + σB (z) , (6)

and its drift coefficient is:

κ (z; θ) = µ
dρ (z; θ)

dz
. (7)

For simplicity, let h(z;θ) = dρ(z;θ)/dz. Under some mild assumptions, the PDF of the FPT for the
new degradation process Y(z) is (see Theorem 2 in Si, et al. [24]):

pZ (z|µ) = 1√
2πz

(
ω− µρ (z; θ)

σz
+

κ (z; θ)

σ

)
· exp

(
− (ω− µρ (z; θ))2

2σ2z

)
. (8)

In consideration of the random effect due to unit-to-unit variation, the uncertainty of µ should be
included in the PDF of the FPT. We compute the result by the law of total probability, i.e.,:

pZ (z) =
∫

pZ (z|µ)p (µ) dµ. (9)

In order to explicitly obtain the formula of Equation (9), Theorem 3 of Si, et al. [24] is introduced
and modified accordingly; that is:

Theorem 1. If µ ~N(µ0, σ2
0 ), and ω, A, B, C∈ R, then:

Eµ

[
(ω− Aµ) · exp

(
− (ω−Bµ)2

2C

)]
=
√

C
B2σ2

0+C
·
(

ω− A Bσ2
0 ω+µ0C

B2σ2
0+C

)
· exp

(
− (ω−Bµ0)

2

2(B2σ2
0+C)

)
. (10)

Therefore, we substitute Equations (8) into (9) according to Equation (10). The result is:

pZ (z) = 1
z
√

2πQ exp
(
− (ω−ρ(z;θ)µ0)

2

2Q

)
·
(

ω− (ρ (z; θ)− h (z; θ) z) ρ(z;θ)σ2
0 ω+µ0σ2z
Q

)
, (11)

where Q = ρ2(z;θ)σ2
0 + σ2z.

Hence, the PDF of the FPT for the general model can be obtained by the reverse process of the
time transformation z = τ(t;γ) through Equation (11); that is:

pT (t) = 1
τ(t;γ)

√
2πQ exp

(
− (ω−Λ(t;θ)µ0)

2

2Q

)
·
(

ω− G Λ(t;θ)σ2
0 ω+µ0σ2τ(t;γ)

Q

)
dτ(t;γ)

dt , (12)

where Q = Λ2(t;θ)σ2
0+ σ2τ(t;γ); G = Λ(t;θ) − h(τ(t;γ);θ)τ(t;γ).
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Supposing that Λ(t;θ) = tθ and τ(t;γ) = tγ, Equation (12) becomes:

pT (t) =
γ

t
√

2π
(
σ2

0 t2θ + σ2tγ
)exp

(
−

(
ω− µ0tθ

)2

2
(
σ2

0 t2θ + σ2tγ
)) ·(ω−

(γ− θ) tθ
(
ωσ2

0 tθ + µ0σ2tγ
)

γ
(
σ2

0 t2θ + σ2tγ
) )

. (13)

Herein, the relationship
∫

pT(t)dt = 1 should be satisfied. Therefore, the PDF and cumulative
distribution function (CDF) of the FPT for model M0 are modified as:

fT (t) ∼= pT (t)/
∫ +∞

0 pU (u) du,
FT (t) ∼=

∫ t
0 pU (u) du/

∫ +∞
0 pU (u) du.

(14)

For M1, i.e., Λ(t;θ) = t and τ(t;γ) = t, the PDF of the FPT for M1 is known as an inverse Gaussian
distribution [29]. Considering the random effect, the PDF and CDF of the FPT are [22,28]:

fT (t) = ω√
2πt3(σ2

0 t+σ2)
exp

(
− (ω−µ0t)2

2t(σ2
0 t+σ2)

)
,

FT (t) = Φ
(

µ0t−ω√
σ2

0 t2+σ2t

)
+ exp

(
2µ0ω

σ2 +
2σ2

0 ω2

σ4

)
·Φ
(
− 2σ2

0 ωt+σ2(µ0t+ω)

σ2
√

σ2
0 t2+σ2t

)
.

(15)

Obviously, Equation (15) is a limiting case of Equation (14) if we substitute θ = γ = 1 into
Equation (13), where

∫
pT(t)dt = 1.

For M2, i.e., Λ(t;θ) = τ(t;γ), the PDF of the FPT for M2 is in accordance with Equation (15) through
a time-scale transformation by replacing t into Λ(t;θ) or τ(t;γ) [18,30], which is also a limiting case of
Equation (14).

In the following section, the problems of parameter estimation will be addressed for CSADT and
SSADT. After that, the PDF and CDF of the FPT at normal stress levels will be computed through
Equation (14) for the lifetime and reliability evaluation of long lifespan products.

3. Statistical Inference

With different loading profiles of accelerated stresses, CSADT and SSADT are widely used in
engineering applications. Figure 1a,b show the schematic of these two types of ADT under three stress
levels. In the left, samples are separated into different groups and tested under different constant stress
levels, i.e., S1, S2 and S3, while, on the right, all samples are in the same group and tested from the
lowest stress level to the highest in a step-by-step manner, i.e., S1 → S2 → S3. Thus, the advantage of
SSADT is that it can save the number of samples with a shorter test time [31].
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Figure 1. The schematic of (a) CSADT and (b) SSADT under three stress levels.
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Herein, we provide the method for estimating the unknown parameters in CSADT. Given in
Section 2, the unknown parameter vector is Ω = [θ, γ, σ, a, b, ηv], v = 1, 2, . . . , p. The analytic
expressions of those parameters are hard to obtain directly. Hence, a two-stage maximum likelihood
estimation (MLE) method is proposed to address this issue. In the first stage, the parameters related
to the degradation process model are estimated, i.e., Ω1 = [θ, γ, σ] in Equation (1). In the second
stage, the rest of the parameters related to the acceleration model, i.e., Ω2 = [a, b, ηv] in Equation (2),
are given accordingly.

3.1. Estimation of Ω1 for CSADT

The observed CSADT data xijk is the kth degradation value of unit j under the ith stress level and
tijk is the corresponding measurement time, i = 1, 2, . . . , K, j = 1, 2, . . . , ni, k = 1, 2, . . . , mij, where
K is the number of stress levels, ni is the number of test samples under the ith stress level, and mij
is the number of measurements for unit j under the ith stress level. Let Xij = (xij1, xij2, . . . , xijmij)′

and tij = (Λ(tij1;θ), Λ(tij2;θ), . . . , Λ(tijmij;θ))′. According to the properties of the Wiener process, the
degradation value Xij follows a multivariate normal distribution:

Xij ∼ N
(

µijtij, σ2Qij

)
, (16)

where µij is the drift coefficient of unit j under the ith stress level:

Qij =


τ
(
tij1; γ

)
τ
(
tij1; γ

)
· · · τ

(
tij1; γ

)
τ
(
tij1; γ

)
τ
(
tij2; γ

)
· · · τ

(
tij2; γ

)
...

...
. . .

...

τ
(
tij1; γ

)
τ
(
tij2; γ

)
· · · τ

(
tijmij ; γ

)
 .

Let µ =
(
µ11, · · · , µ1n1 , · · · , µKnK

)
. The likelihood function of the CSADT data can be easily

obtained by Equation (16) and the logarithm function is:

l (µ, σ, θ, γ|X) = − ln(2π)
2

K
∑

i=1

ni
∑

j=1
mij − 1

2

K
∑

i=1

ni
∑

j=1
ln
∣∣σ2Qij

∣∣− 1
2

K
∑

i=1

ni
∑

j=1

(
Xij − µijtij

)′
σ−2Q−1

ij
(
Xij − µijtij

)
. (17)

The first partial derivative of Equation (17) to µij and σ2 are:

∂l (µ, σ, θ, γ|X)
∂µij

= X′ijσ
−2Q−1

ij tij − µijt′ijσ
−2Q−1

ij tij, (18)

∂l (µ, σ, θ, γ|X)
∂σ2 = − 1

2σ2

K

∑
i=1

ni

∑
j=1

mij +
1

2σ4

K

∑
i=1

ni

∑
j=1

(
Xij − µijtij

)′Q−1
ij
(
Xij − µijtij

)
. (19)

The maximum value of the log-likelihood function in Equation (17) is obtained when
Equations (18) and (19) are equal to zero. Thus, the estimates of µ̂ij and σ̂2 relying on θ and γ are:

µ̂ij =
X′ijQ

−1
ij tij

t′ijQ
−1
ij tij

, (20)

σ̂2 =

K
∑

i=1

ni
∑

j=1

(
Xij − µ̂ijtij

)′Q−1
ij
(
Xij − µ̂ijtij

)
K
∑

i=1

ni
∑

j=1
mij

. (21)
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Substituting Equations (20) and (21) into (17), the log-likelihood function is only a function of θ

and γ, i.e.,:

l (θ, γ|X) = − ln(2π)
2

K
∑

i=1

ni
∑

j=1
mij − 1

2

K
∑

i=1

ni
∑

j=1
ln
∣∣σ̂2Qij

∣∣− 1
2

K
∑

i=1

ni
∑

j=1

(
Xij − µ̂ijtij

)′
σ̂−2Q−1

ij
(
Xij − µ̂ijtij

)
. (22)

Thus, θ̂ and γ̂ can be obtained by the two-dimensional search for the maximum value of
Equation (22) [32]. Then, the estimation of µ̂ij and σ̂2 can be easily computed by substituting θ̂

and γ̂ into Equations (20) and (21).

3.2. Estimation of Ω2 for CSADT

The estimate of Ω2 is related to the acceleration model in Equation (2). From Section 3.1,
the estimates of the drift coefficients µij for unit j under the ith stress level are given and the

corresponding stresses are s(i)v , i = 1, 2, . . . , K, j = 1, 2, . . . , ni. With the consideration of unit-to-unit
variation in Equation (2), the relationship among them is denoted as:

µij ∼ N
(

a ·
p

∏
v=1

[
ϕ
(

s(i)v

)]ηv
, b ·

p
∏

v=1

[
ϕ
(

s(i)v

)]2ηv
)

, (23)

where µij will be replaced by its estimate µ̂ij from Equation (20).

For simplicity, let
(

s(i)v

∣∣∣ηv

)
=

p
∏

v=1

[
ϕ
(

s(i)v

)]ηv
. Thus, the log-likelihood function for Ω2 is:

l′ (a, b, ηv|µ̂) = − ln(2π)
2

K
∑

i=1
ni − 1

2

K
∑

i=1

ni
∑

j=1

(
lnb + 2ln

(
s(i)v

∣∣∣ηv

))
− 1

2

K
∑

i=1

ni
∑

j=1

(
µ̂ij−a

(
s(i)v

∣∣∣ηv

))2

b
(

s(i)v

∣∣∣ηv

)2 . (24)

Similar to the estimation procedure of Ω1, we compute the estimation of â and b̂ relying upon(
s(i)v

∣∣∣ηv

)
, which are:

â = 1
K
∑

i=1
ni

K
∑

i=1

ni
∑

j=1

µ̂ij(
s(i)v

∣∣∣ηv

) , b̂ = 1
K
∑

i=1
ni

K
∑

i=1

ni
∑

j=1

(
µ̂ij(

s(i)v

∣∣∣ηv

) − â

)2

. (25)

Then, substituting Equations (25) into (24), the η̂v can be obtained by a p dimensional search
for the maximum value of Equation (24). After that, the estimates of â and b̂ can be given by
Equation (25), accordingly.

3.3. Estimation of Ω1 and Ω2 for SSADT

The estimates of unknown parameters in SSADT are slightly different from that in CSADT. If
we divide SSADT data by the number of the stress levels K and set the initial values at each stress
level to be zero, the SSADT data can be transformed into CSADT data. For instance, in Figure 1b,
the degradation values from 0 to x1 during the time interval [0 , t1] is obviously a subset of CSADT
data. For the time intervals ( t1, t2] and ( t2, t3], a transformation will be given since the initial values of
both time and degradation value are not zero, as they are in CSADT.

Keeping this in mind, we assume that t ∈ (t1 , t2] and its corresponding degradation value is
x ∈ (x1 , x2]. According to the properties of the Wiener process, the degradation value x satisfies that
x − x1 ~N(µ2(Λ(t;θ) − Λ(t1;θ)), σ2(τ(t;γ) − τ(t1;γ))) where µ2 is the drift coefficient when t ∈ (t1 , t2].
Given that x′ = x − x1, Λ′(t;θ) = Λ(t;θ) − Λ(t1;θ) and τ′(t;γ) = τ(t;γ) − τ(t1;γ). The SSADT data
in the time interval ( t1, t2] can be interpreted as a subset of CSADT data where the transferred
degradation value is from 0 to x′ during the time interval [0 , t∗], where t∗ is Λ′(t;θ) or τ′(t;γ) accordingly.
This procedure is the same for the data in the time interval (t2, t3].
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Following this idea, let the observed SSADT data be xijk, which is the kth degradation value of
unit j at the stress level i and tijk is the corresponding measurement time, i = 1, 2, . . . , K, j = 1, 2, . . . , n,
k = 1, 2, . . . , mij. The transformations are given in Equations (26)–(28):

Xij =


xij1
xij2

...
xijmij

− x(i−1)jm(i−1)j
· Imij×1, (26)

tij =


Λ
(
tij1; θ

)
Λ
(
tij2; θ

)
...

Λ
(

tijmij ; θ
)
−Λ

(
t(i−1)jm(i−1)j

; θ
)
· Imij×1, (27)

Qij =


τ
(
tij1; γ

)
τ
(
tij1; γ

)
· · · τ

(
tij1; γ

)
τ
(
tij1; γ

)
τ
(
tij2; γ

)
· · · τ

(
tij2; γ

)
...

...
. . .

...

τ
(
tij1; γ

)
τ
(
tij2; γ

)
· · · τ

(
tijmij ; γ

)
− τ

(
t(i−1)jm(i−1)j

; γ
)
· Imij×mij , (28)

where Im×n is the m × n all ones matrix; t0jk = 0 and x0jk = 0.
Then, the unknown parameters in SSADT can be given by the proposed two-stage MLE method

for CSADT, as shown in Sections 3.1 and 3.2.

4. Case Study

In this section, one simulation example and two real cases are used to demonstrate the validity
and superiority of the proposed models and methods over other existing forms of the Wiener processes
on linear and nonlinear ADT analyses.

The literature has shown that the expectation of the degradation path can be formulated by an
exponential function [33]. Therefore, the forms Λ(t;θ) = tθ and τ(t;γ) = tγ will be used in this paper.
In order to compare the s-fits of model M0 with M1 and M2, the Akaike information criterion (AIC)
is introduced:

AIC = −2lmax + 2np, (29)

where lmax is the maximum value of the log-likelihood function in Equation (17), and np is the number
of unknown parameters. The lower the AIC value is, the better the model fits.

According to Burnham and Anderson [34], it is imperative to rescale AIC to:

∆i = AICi − AICmin, (30)

where AICmin is the minimum of AICi values. Then, ∆ = 0 for the best model, ∆ ≤ 2 for models having
substantial support, 4 ≤ ∆ ≤ 7 for models having considerably less support and ∆ > 10 for models
having essentially no support compared to the best models.

In addition, for illustration purpose of the fitting results, a quantile-quantile (Q-Q) plot is used
to graphically present the goodness of fit of each model on ADT data with the following standard
normal distribution:

xijk−µ̂ijΛ(tijk ;θ)

σ
√

τ(tijk ;γ)
∼ N (0, 1) i = 1, 2, · · · , K, j = 1, 2, · · · , ni, k = 1, 2, · · · , mij , (31)

where the plot is approximately linear if the fitting is satisfactory.
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4.1. Simulation Example

SSADT data is simulated under three temperature stress levels, T = 60 ◦C, 100 ◦C, and 120 ◦C,
and the normal temperature of 25 ◦C. The observation time interval is one hundred hours, while the
number of observations under three stress levels are 15, 10 and 5, respectively. Hence, the total test
time is 3000 h. In order to evaluate the influence of the sample size on parameter estimation and the
reliability evaluation, we conduct three simulation analyses under the sample size n = 5, 10 and 30,
respectively. The failure threshold ω is 100. Without a loss of generality, the parameters are set to
be θ = 1.5, γ = 0.4, σ2 = 0.01, a = 20, b = 5, and η1 = −1500. The Arrhenius model is selected as the
acceleration model, which is:

µ (T; η0, η1) = η0exp
(

η1

273.15 + T

)
. (32)

First, we check the normal assumption of µ0 at the normal stress level. Given by Equation (32)
and the parameter settings, Pr(µ0 < 0) = 1.8720 × 10−19, which is approximately near zero. Thus, the
non-negative assumption can be satisfied to compute the PDF of the FPT. In the following, both the
model comparison and sensitivity analysis are conducted with the abovementioned parameter values.

4.1.1. Model Comparison

Given the ADT data with different sample sizes, the relative errors (RE) of the parameter
estimation in percentage are computed by:

RE =
Estimated.value− True.value

True.value
× 100. (33)

To investigate the variance and the bias of the estimator, the relative square error (RSE) of
parameters in percentage is also given by Equation (34):

RSE =
(Estimated.value− True.value)2

True.value2 × 100. (34)

From the above settings, M0, M1 and M2 have 6, 4 and 5 parameters, respectively. Meanwhile,
the absolute error (AE) of the candidate model Mi (i = 0, 1, 2) to the real model Mreal is given by
Equation (35) to quantitatively analyze the reliability evaluation results:

AE (Mi|Mreal) =
1

Nt

Nt

∑
j=1

[
FT
(
tj
∣∣Mreal

)
− FT

(
tj
∣∣Mi

)]
, (35)

where FT(t) is the CDF of the FPT at the normal stress level given by Equation (13), tj = 0.1, 1.1, . . . , 699.1,
for hundreds of hours in this study, Nt = 700. Herein, if AE > 0, it means that model Mi overestimates
the reliability evaluation results comparing with the true values, otherwise it underestimates.

Table 1 gives the estimates of unknown parameters with their REs and RSEs, and AEs of reliability
estimation for different models at different sample sizes. Figure 2 illustrates the fitting results of
each model on the simulation data when n = 10. Clearly, from lmax and ∆ values at each sample size,
M0 is the most suitable model, then is model M2, and the worst is model M1. The reason is that the
time-scale transformation model M2 can capture the nonlinear property of the degradation process to
some extent, but still perform worse than M0. As to M1, it tries to linearize the nonlinear degradation
process, which leads to dreadful fitting results and poor parameter estimation compared with the
true results.
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Table 1. Simulation example: parameter estimates with REs and RSEs in percentage (in parentheses), and AEs of reliability estimation for three candidate models
under three sample sizes.

Mi n θ γ σ2 η0 η1 lmax np AIC ∆ AE
a b

M0

5
1.491 0.273 0.0177 21.62 4.33 –1502

317

6

–621 0 –2.9×10−3
(−0.57, 3.3 × 10−3) (−32, 10) (77, 59) (8.1, 0.65) (−13, 1.8) (0.13, 1.7 × 10−4)

10
1.502 0.381 0.0097 18.65 4.42 –1477

635 –1259 0 –1.2 × 10−3
(0.14, 2.0 × 10−4) (−4.7, 0.22) (−3.1, 0.096) (−6.7, 0.45) (−12, 1.3) (−1.5, 0.023)

30
1.501 0.352 0.0114 20.90 5.18 –1515

1898 –3784 0 2.7 × 10−4
(0.055, 3.0 × 10−5) (−12, 1.4) (14, 2.1) (4.5, 0.20) (3.6, 0.13) (1.0, 0.011)

M1

5
1 (fixed) 1 (fixed) 0.0607 8.5 × 103 7.9 × 105 –3045 −2.7

4

13.4 635 0.343(−33, 11) (150, 225) (507, 2.6 × 103) (4.2 × 104, 1.8 × 107) (1.6 × 107, 2.5 × 1012) (103, 106)

10
1 (fixed) 1 (fixed) 0.0579 8.2 × 103 8.3 × 105 –3049

1.7 4.6 1263 0.365(−33, 11) (150, 225) (479, 2.3 × 103) (4.1 × 104, 1.7 × 107) (1.7 × 107, 2.8 × 1012) (103, 107)

30
1 (fixed) 1(fixed) 0.0578 9.2 × 103 1.1 × 106 –3087

5.5 –3.0 3781 0.374(−33, 11) (150, 225) (478, 2.3 × 103) (4.6 × 104, 2.1 × 107) (2.2 × 107, 4.6 × 1012) (106, 112)

M2

5
1.461 =θ 7.29 × 10−4 29.55 8.27 –1577

217

5

–425 197 3.2 × 10−3
(−2.6, 0.068) (265, 704) (−93, 86) (48, 23) (65, 43) (5.1, 0.26)

10
1.476 =θ 4.79 × 10−4 24.54 7.64 –1544

490 –971 288 4.2 × 10−3
(−1.6, 0.026) (269, 724) (−95, 91) (23, 5.2) (53, 28) (2.9, 0.087)

30
1.477 =θ 5.87 × 10−4 26.96 8.58 –1577

1380 –2750 1034 5.3 × 10−3
(−1.6, 0.025) (269, 724) (−94, 89) (35, 12) (72, 51) (5.2, 0.27)
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From the AE values in Table 1, it is known that both model M1 and M2 overestimate the reliability
evaluation results at normal stress levels. With the sample size increasing, the AEs for M1 and M2

become larger since that they are not the right models for ADT analysis and the level of error will
be amplified when more data are available for model validation. Meanwhile, model M0 slightly
underestimates the reliability evaluation results from AE indexes, and the accuracies are improved by
several orders of magnitude when the sample size goes from five to 30. The results demonstrate that
model M0 is the most applicable model for nonlinear ADT analysis and can provide accurate reliability
and lifetime evaluation results.

Figure 3 presents the PDFs and CDFs of the FPT for models M0 and M2 with the real values when
the sample size n = 10. It is clear that model M0 is closer to the real values than M2. The mean time to
failure (MTTF) for M0 and M2 are 8340 and 8720 h, while the true value is 8430 h. The results verify
the effectiveness of model M0 than M2 with respect to nonlinear ADT analysis.
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4.1.2. Sensitivity Analysis

In this section, sensitivity analysis is conducted to analyze the robustness of the general model
M0 with different values of model parameters [θ, γ, σ2, η0 (i.e., a, b), η1] for the simulation example.

Here, we set the parameters’ real values to 90%, 95%, 100%, 105% and 110% as the five factor
levels. If model M0 is robust, its relative error of reliability evaluation results at normal stress levels
should be as small as possible when compared with the real model Mreal. Herein, we repeated the
simulation procedure of SSADT data for Ns = 100 times and n = 10 samples will be generated at each
time point. Then, the relative error for model M0 (RE of M0) is given through Equation (36):

RE (M0) =
1

Ns

Ns

∑
k=1

1
Nt

Nt

∑
j=1

∣∣∣Fk
T
(
tj
∣∣M0

)
− Fk

T
(
tj
∣∣Mreal

)∣∣∣. (36)

where Fk
T (·) is the CDF of the FPT at the normal stress level for the kth simulation.

Due to the extensive pairs of parameter combinations, say 56 = 15,625 and Ns = 100 repeated
simulations, it will lead to heavy computational effort to compute the results. Thus, the orthogonal
design of experiments is introduced to reduce the number of combinations, but still be able to find
the sensitive parameters from the response (RE of M0) at each factor level [35]. The orthogonal array
L25(56) is selected with 25 overall tests rather than 56.

The sensitivity analysis results are listed in Table 2, where the numbers from 1 to 5 refer to the
first to fifth factor levels of the real values. For instance, in Test No. 1, the values are all 1, which
means that 90% of all of the real values will be used to compute the corresponding response, which
is 0.026812. The means of the responses for the five factor levels are listed at the bottom of Table 2,
i.e., MRj, j = 1, 2, . . . , 5. The absolute biases are then calculated through δ = max(MRj) − min(MRj)
which presents the influence of each parameter to the RE of M0. From Table 2, it is known that the
sensitivity of the parameters is ranked as θ > b > η1 > γ > σ2 > a for the simulation study. Hence, special
attention should be given to those parameters when using them for reliability and lifetime evaluation
at normal stress levels. Furthermore, the absolute bias δ ranged from 0.01806 to 0.05734, indicating
that model M0 is quite robust for lifetime and reliability evaluation.

Since the parameters a and b contribute to the normal drift coefficient µ0, we may be interested in
the performances of M0 on a wide range of the coefficients of variations (CVs). Five new factor levels
are given to a and b with other parameters fixed, i.e., 20%, 60%, 100%, 140% and 180%. Twenty five
tests were conducted with Ns = 100 repeated simulations according to the values at the first three
columns in Table 2. The results are shown in Figure 4. As we can see, the relative errors of M0 remain
as significantly lower values than 0.05 with the CVs ranging 0~0.25. While the relative errors rise to
the values around 0.3 with the CVs ranging 0.25~0.75, the robustness of M0 is still shown.
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Table 2. Sensitivity analysis of M0 with five levels of parameters through the orthogonal array L25(56)
and Taguchi analysis.

Test No. θ γ σ2 η0 η1 RE of M0
a b

1 1 1 1 1 1 1 0.026812
2 1 2 2 2 2 2 0.049430
3 1 3 3 3 3 3 0.076352
4 1 4 4 4 4 4 0.107904
5 1 5 5 5 5 5 0.149784
6 2 1 2 3 4 5 0.101002
7 2 2 3 4 5 1 0.017453
8 2 3 4 5 1 2 0.005818
9 2 4 5 1 2 3 0.042759

10 2 5 1 2 3 4 0.068059
11 3 1 3 5 2 4 0.014726
12 3 2 4 1 3 5 0.060681
13 3 3 5 2 4 1 0.032238
14 3 4 1 3 5 2 0.018415
15 3 5 2 4 1 3 0.006743
16 4 1 4 2 5 3 0.019738
17 4 2 5 3 1 4 0.008050
18 4 3 1 4 2 5 0.010650
19 4 4 2 5 3 1 0.053845
20 4 5 3 1 4 2 0.031300
21 5 1 5 4 3 2 0.053440
22 5 2 1 5 4 3 0.044617
23 5 3 2 1 5 4 0.021416
24 5 4 3 2 1 5 0.009040
25 5 5 4 3 2 1 0.061280

MR1 0.08206 0.04314 0.03371 0.03659 0.01129 0.03833 T = 1.09155
MR2 0.04702 0.03605 0.04649 0.03570 0.03577 0.06138
MR3 0.02656 0.02929 0.02977 0.05302 0.06248 0.03804
MR4 0.02472 0.04639 0.05108 0.03924 0.06341 0.04403
MR5 0.03796 0.06343 0.05725 0.05376 0.04536 0.06623

δ 0.05734 0.03414 0.02748 0.01806 0.05212 0.03455
Rank 1 4 5 6 2 3

4.2. Real Applications

In the next two sections, two real ADT applications are used to further illustrate the advantages
of M0 over M1 and M2 for both linear and nonlinear ADT analyses.

4.2.1. LED Application

Light emitting diodes (LEDs) have the merit of longer lifetime, lower power consumption, and
higher brightness than traditional light sources and, thus, are widely used in the area of lighting
systems. The CSADT for LEDs is conducted under two electric current levels: 35 mA and 40 mA.
The normal stress level is 25 mA. Twelve LEDs are tested at each stress level and the degradation
data are recorded at 50, 100, 150, 200 and 250 h. The LED will be considered to have failed when
the relative degradation value of the light intensity exceeds ω = 50. For the original data, refer to
Chaluvadi [36] (Table 6.3). Figure 5 shows the degradation paths for the twenty-four tested samples
under two stress levels.
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(b) 40 mA.

In [36], a linear model is used to extrapolate the pseudo-failure time of each LED at two stress
levels. Then, the inverse power law is used to determine the relation between the failure time data
and the electric current stresses. This procedure is similar to model M1 in our approach. As we can
see from Figure 5, the tested LEDs experience nonlinear degradation paths. Therefore, a linear model
like M1 may not be appropriate for ADT analysis in this case. Thus, we use model M0 to fit the data
and compare the results with model M1 and M2 to verify its effectiveness on nonlinear ADT analysis.
The inverse power model is used as the acceleration model, i.e.,:

µ (I; η0, η1) = η0 Iη1 . (37)

Table 3 gives the estimates of unknown parameters according to the procedure in Sections 3.1
and 3.2. It can be calculated that Pr(µ0 < 0) = 6.1870 × 10−11, which verifies that there is no danger
of there being any negative drift coefficient. Figure 6 presents the fitting results. It is obvious that
model M0 is the most applicable model with the maximum log-likelihood and lowest AIC value, which
is the same as the fitting results. As with the linear model M1, the fitting results are worse than the
other two models. Thus, the linear model in [36] is not appropriate for the LED application, while the
performance of model M2 lies between model M0 and M1.

Table 3. LED application: parameter estimates for three candidate models with random drift coefficients
(b 6= 0).

Model θ γ σ2 η0 η1 lmax np AIC ∆
a b

M0 0.442 0.117 73.784 0.273 0.0018 0.677 –310 6 633 0
M1 1 (fixed) 1 (fixed) 0.761 1.69 × 10−6 5.62 × 10−14 3.112 –389 4 785 152
M2 0.450 =θ 5.840 3.52 × 10−5 2.43 × 10−11 3.112 –317 5 644 11
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Additionally, as shown in Table 3, the b values are close to zero, which suggests a deterministic
drift coefficient without the consideration of unit-to-unit variation. Hence, we consider this situation
(b = 0) for all three models. The parameters are estimated through a one-stage MLE (see Table 4).

Compared with the AIC values in Tables 3 and 4, it can be concluded that the models considering
unit-to-unit variation (b 6= 0) fit the LED data better than without consideration (b = 0), which indicates
the presence of such variation. Additionally, among the three models, M0 should be selected for the
LED ADT data analysis with the lowest AIC value.

Table 4. LED application: parameter estimates for three candidate models with deterministic drift
coefficients (b = 0).

Model θ γ σ2 η0 = a η1 lmax np AIC ∆

M0 0.448 0.171 45.429 0.012 1.179 –314.6634 5 639 0
M1 1 (fixed) 1 (fixed) 0.776 8.67 × 10−7 3.297 –389.7358 3 785 146
M2 0.4477 =θ 6.238 1.83 × 10−5 3.297 –319.9119 4 648 9

The PDFs of the FPT for different models (b 6= 0) at normal stress levels are shown in Figure 7.
The MTTF for M0, M1, and M2 are 1167.2, 1345.0, and 13,169.2 h, while the 95% confidence intervals
are [202.1, 3459.1], [364.1, 3744.1], and [1660.1, 52,787.1] h, respectively. However, the estimated
lifetime using the degradation-path model in Chaluvadi [36] (p. 103) is 1346 h. It is interesting to see
that the intervals of M0 and M1 can capture this value to show the consistency of evaluation results
under different models, while M2 computes significantly larger values, meaning that model M2 is
unreliable. A reasonable explanation may be that the time-scale transformation is inapplicable for the
nonlinear ADT analysis for LEDs. With respect to model M1, its lifetime evaluation results are closer
to model M0, although it fits worse on the ADT data than model M2. In Tang, et al. [18], the time-scale
transformation model M2 is used to analyze the same set of data and their 95% confidence interval
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is [1672, 53,466] h, which, however, is also not valid in the LED case, as discussed. For the proposed
model M0, its evaluation results are reliable with the best nonlinear ADT data fitting.Materials 2016, 9, 981  16 of 20 
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4.2.2. Resistor Application

Carbon-film resistors are a fixed-form type of resistor and have superior characteristics to carbon
composite resistors in terms of much closer tolerances, higher maximum ohmic values, and being
used in high voltage and high temperature applications. Thus, the resistance of such a resistor is
affected by the temperature (s1) and applied voltage (s2). Hence, in order to evaluate their lifetimes,
the CSADT is conducted under nine constant stress levels with two acceleration variables, i.e., s1 = 3.5,
4.0 and 5.0 in hundred Kelvin, s2 = 10, 15 and 20 volts. The normal stress level is s1 = 3.2315 and s2 = 5.
Ten resistors are tested at each stress level. For more details about the description of resistor data,
readers are referred to Park and Padgett [25]. The original data is modified to ensure that the initial
degradation values are equal to zero and the threshold ω is, therefore, set to be 0.2. The CSADT data
at the first stress level is presented in Figure 8. It is clear that the degradation processes follow linear
paths which are the same as the data in other stress levels.
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Regarding the acceleration model with the unit-to-unit variation, the following model with two
acceleration variables is used [25]:

µ (s1, s2; η0, η1, η2) = η0eη1s1 · eη2s2 . (38)

Table 5 presents the estimates of the unknown parameters for different models on resistor CSADT
data. We also calculated that Pr(µ0 < 0) = 6.0094 × 10−6, which verifies that there is no danger of there
being any negative drift coefficient. Intuitively, compared with M1 and M2, model M0 displays the
best fit with the maximum log-likelihood value and minimum AIC value. However, according to
the ∆ values, there is substantial support for model M2 and considerably less support for model M1.
The fitting results for the different models are shown in Figure 9, which imply that the performances of
those models are similar in the resistor case since that the degradation paths are approximately linear.
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Table 5. Resistor application: parameter estimates for three candidate models with random drift
coefficients (b 6= 0).

Model θ γ σ2 η0 η1 η2 lmax np AIC ∆
a b

M0 1.076 0.918 3.02 × 10−4 8.96 × 10−4 4.19 × 10−8 0.462 0.108 1698 7 –3383 0
M1 1 (fixed) 1 (fixed) 2.59 × 10−4 0.0012 7.02 × 10−8 0.440 0.102 1694 5 –3378 4.8
M2 1.046 =θ 2.35 × 10−4 0.0010 5.12 × 10−8 0.451 0.106 1697 6 –3381 1.6

Herein, we also checked the models without the consideration of unit-to-unit variation. The results
are listed in Table 6. Compared with the results in Table 5, it can be seen that models with the normal
drift coefficients (b 6= 0) have lower AIC values, which means that the unit-to-unit variation should be
considered. It is also interesting to see that, from Table 6, M1 is the best model with a deterministic
drift coefficient, while supports are given to the other two models.

We may also be interested in whether M0 can be simplified into M2 with the assumption (θ = γ)
since M2 has substantial support. Hence, the likelihood ratio (LR) test is implemented with the
log-likelihood values in Table 5. The resulting LR statistic is 3.57 (<χ2

1,0.05 = 3.84). Thus, we accept the
assumption and choose M2.
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The PDFs and CDFs of the FPT for different models are given in Figure 10a,b, which are almost
identical with the MTTF at around 2400 h, and the PDF of the FPT for model M0 is slightly sharper
than that of M1 and M2.

Table 6. Resistor application: parameter estimates for three candidate models with deterministic drift
coefficients (b = 0).

Model θ γ σ2 η0 = a η1 η2 lmax np AIC ∆

M0 1.020 0.9498 3.33 × 10−4 0.0011 0.445 0.104 1647 6 –3282 2.7
M1 1 (fixed) 1 (fixed) 3.02 × 10−4 0.0012 0.439 0.103 1646 4 –3284 0
M2 1.008 =θ 2.97 × 10−4 0.0011 0.442 0.103 1646 5 –3283 1.8
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Comparing Section 4.1 with Section 4.2, it can be concluded that the proposed method can be
effectively used for ADT analysis for both linear and nonlinear scenarios with single and multiple
acceleration variables.

5. Conclusions

This paper has proposed a general ADT model based on the Wiener process and provided
statistical analysis methods for unknown parameter estimation. The general ADT model is suitable for
both linear and nonlinear ADT analyses, with single and multiple acceleration variables, and considers
the unit-to-unit variation among the tested samples and temporal variation of the degradation
processes simultaneously. The simulation example demonstrates that the general model is robust with
respect to ADT analysis and its reliability evaluation results become more accurate when the sample
size increases. Furthermore, the LED and resistor cases have verified its effectiveness and superiority
to real engineering applications over the commonly used linear and time-scale transformation Wiener
process models, which not only fit well with the degradation data at all accelerated stress levels,
but also computes reliable lifetime and reliability evaluation results.
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This study focused on the modeling procedure for ADT data based on the Wiener process.
However, other methods, e.g., the Gamma or inverse Gaussian processes, are worth further research
when the degradation paths are monotonic.
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