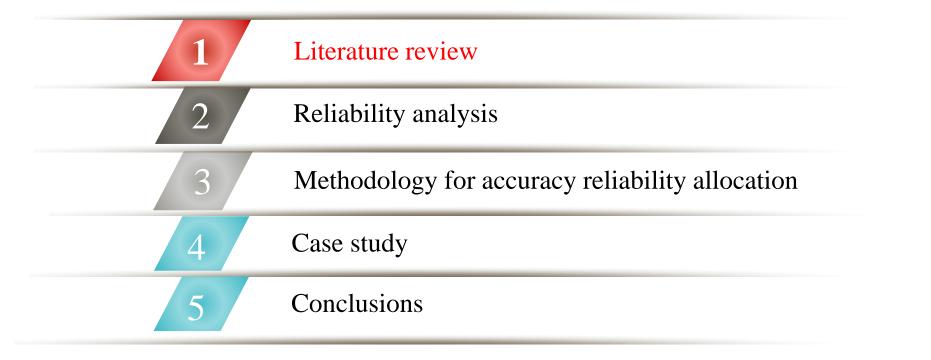
Error allocation for Motion Mechanism Based on the Kinematic Accuracy Reliability

Xing Chen, Xiao-Yang Li, Le Liu

School of Reliability and Systems Engineering, Beihang University, Beijing, China
 Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing, China

Sept. 27, 2016



Literature review

Mechanism kinematic accuracy reliability

It is defined as the probability of the displacement, velocity or acceleration of component meeting the specified value under the influences of various random factors.

The failure criterion

The performance function: $G(z) = \Delta - \delta < 0$

where, Δ is the allowed output error, δ is the actual output error

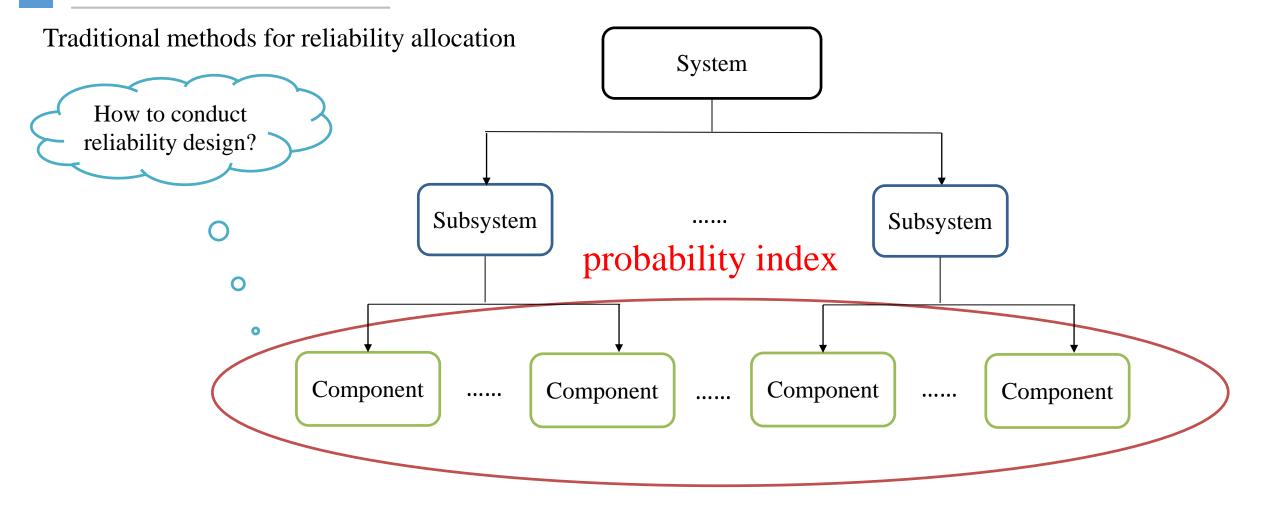
Reliability: R = 1 - P[G(z)]

It is assumed that both the errors follow normal distribution

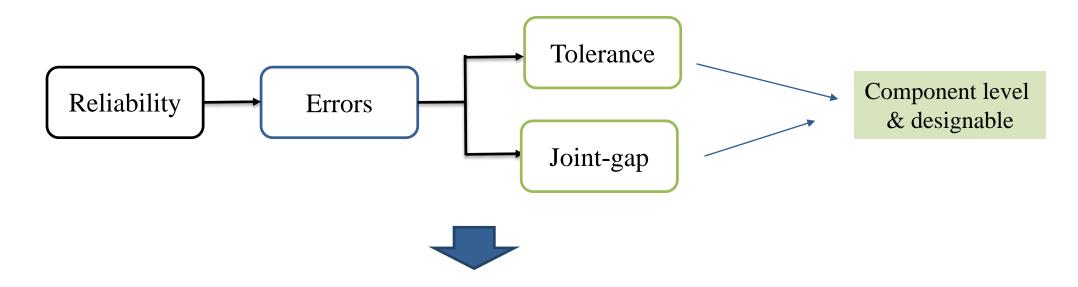
$$R = \phi \left(\frac{\mu_0 - \mu}{\sqrt{\sigma_0^2 + \sigma^2}} \right)$$

where, μ and σ^2 are the mean value and variance of the real output error, while μ_0 and σ_0^2 are the specified mean value and variance of the output error.

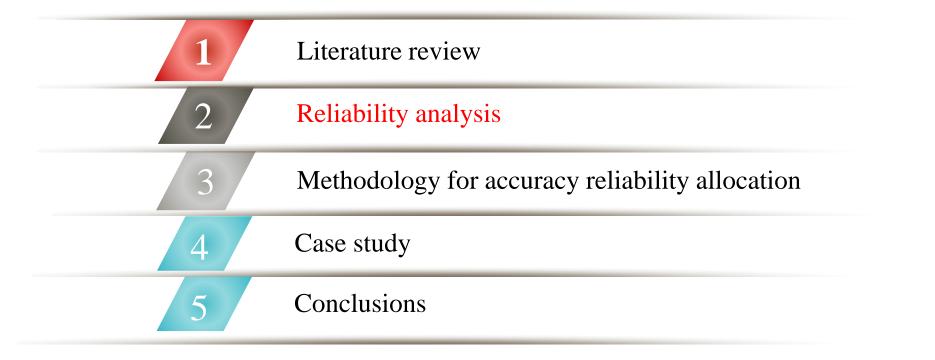
Literature review



Literature review



Our research: Error allocation Based on the Kinematic Accuracy Reliability



Reliability analysis of the kinematic accuracy for mechanism

According to:

$$R = \phi \left(\frac{\mu_0 - \mu}{\sqrt{\sigma_0^2 + \sigma^2}} \right)$$

where, μ_0 and σ_0^2 are the specified mean value and variance of the output error, the key is to obtain μ and σ^2 which are the mean value and variance of the actual output error.

Considered a mechanism is consist of *n* components linked by hinges, the output parameter is a function of the component parameters

$$Y_0 = f\left(X_1, X_2, \cdots, X_n\right)$$

where, Y_0 is the output parameter in the ideal conditions, X_i (*i*=1,2,...,*n*) is the *i*th component parameter, e.g. the bar length.

Reliability analysis of the kinematic accuracy for mechanism

In fact, the error exists in the component parameter due to the manufacturing process

$$Y = f\left(X_1 + \Delta X_1, X_2 + \Delta X_2, \cdots, X_n + \Delta X_n\right)$$

where, *Y* is the actual output, ΔX_i (*i*=1,2,...,*n*) is the *i*th component parameter error.

$$\Delta Y = Y - Y_0 = \sum_{i=1}^n \left(\frac{\partial Y}{\partial X_i}\right) \Delta X_i$$

$$\mu = E(\Delta Y) = \sum_{i=1}^{n} \frac{\partial Y}{\partial X_{i}} E(\Delta X_{i}) = \sum_{i=1}^{n} \frac{\partial Y}{\partial X_{i}} \mu_{i}$$

$$\sigma^{2} = D(\Delta Y) = \sum_{i=1}^{n} \left(\frac{\partial Y}{\partial X_{i}}\right)^{2} D(\Delta X_{i}) = \sum_{i=1}^{n} \left(\frac{\partial Y}{\partial X_{i}}\right)^{2} \sigma_{i}^{2}$$

where, μ_i and σ_i^2 are the mean value and variance of the *i*th component parameter error, respectively.

Reliability analysis of the kinematic accuracy for mechanism

The reliability model considering joint-gaps

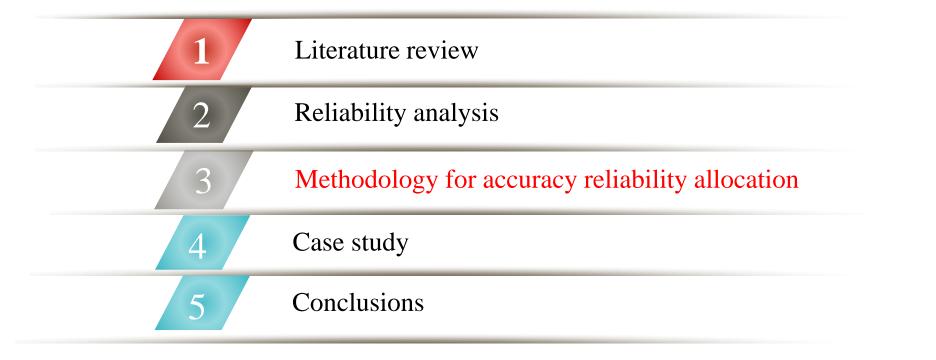
$$\mu = \sum_{i=1}^{n} \frac{\partial Y}{\partial X_{i}} \mu_{i}$$
$$\sigma^{2} = \sum_{i=1}^{n} \left(\frac{\partial Y}{\partial X_{i}}\right)^{2} \left(\sigma_{i}^{2} + \frac{\sigma_{Ri}^{2} + \mu_{Ri}^{2}}{9}\right)^{2}$$

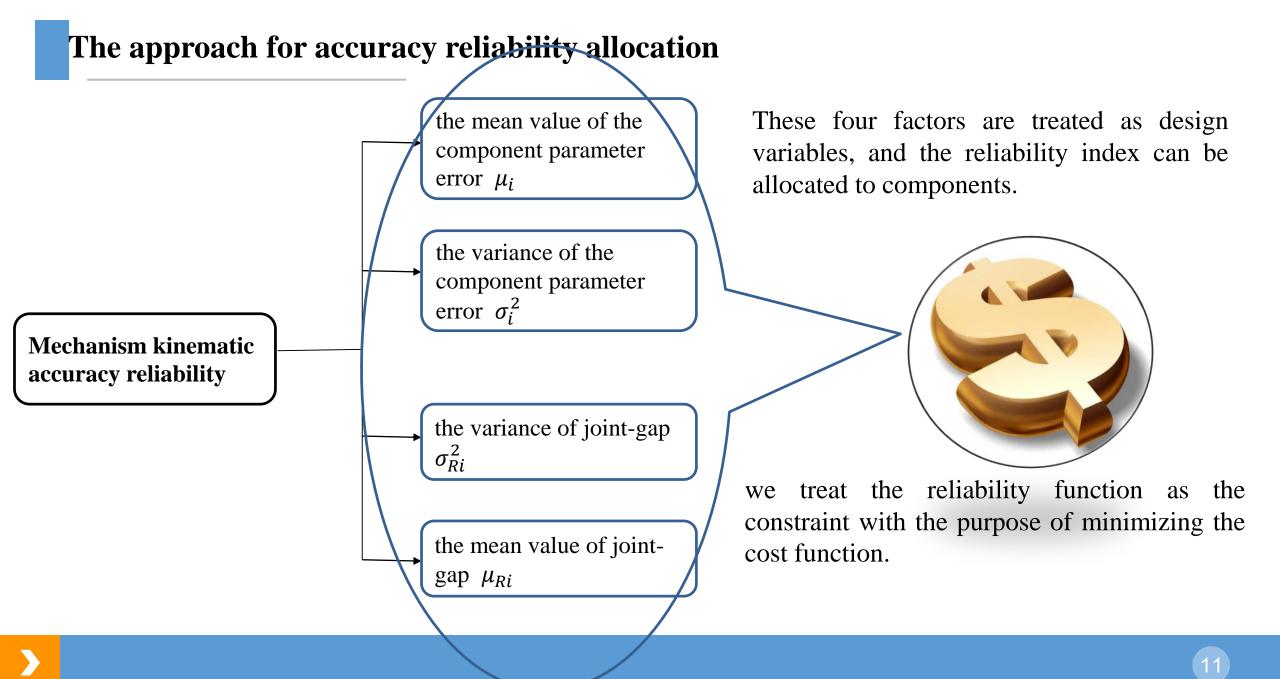
where, μ_{Ri} and σ_{Ri}^2 are the mean value and variance of the *i*th joint-gap, respectively

The reliability model considering joint-gaps and wearing

$$\mu = \sum_{i=1}^{n} \frac{\partial Y}{\partial X_{i}} \mu_{i}$$
$$\sigma^{2} = \sum_{i=1}^{n} \left(\frac{\partial Y}{\partial X_{i}} \right)^{2} \left(\sigma_{i}^{2} + \frac{\sigma_{Ri}^{2} + \sigma_{v}^{2} t^{2} + \left(\mu_{Ri} + \mu_{v} t\right)^{2}}{9} \right)$$

where, t is the working time, μ_v and σ_v^2 are the wear rate mean value and variance, respectively.





The approach for accuracy reliability allocation

The accuracy cost function:

$$G(\sigma_i) = C_i \left(\sigma_i - \sigma_i\right)^2 + D_i$$

where, C_i is a modification coefficient of machining grade, σ_i is the machining accuracy of i^{th} component, σ'_i is the lowest machining accuracy of i^{th} component, D_i is basic cost.

The tolerance cost function:

$$C(T_i) = a_i e^{-b_i T_i}$$

where, T_i is the tolerance, *a* and *b* are curve-fitting parameters that greater than 0.

According to the " 3σ " principle in mechanical design, the tolerance of the component size

 $T_{ci} = 6\sigma_i$

It is assumed that the joint-gap deviation is symmetric.

$$T_{_{Ri}}=2\mu_{_{Ri}}$$

The approach for accuracy reliability allocation

The initial wear rate characteristic value (μ_v, σ_v) can be obtained if a material has been chosen. We should verify whether the wear rate meets the required reliability in the working time.

$$\mu = \sum_{i=1}^{n} \frac{\partial Y}{\partial X_{i}} \mu_{i}$$

$$\mu = \sum_{i=1}^{n} \frac{\partial Y}{\partial X_{i}} \mu_{i}$$

$$\sigma^{2} = \sum_{i=1}^{n} \left(\frac{\partial Y}{\partial X_{i}}\right)^{2} \left(\sigma_{i}^{2} + \frac{\sigma_{v}^{2} t^{2} + (\mu_{v} + \mu_{v} t)^{2}}{9}\right)$$

The optimal model for allocation

$$\min W = G(\sigma) + C(T)$$

$$s.t. \frac{\mu_0 - \mu}{\sqrt{\sigma_0^2 + \sigma^2}} \ge \phi^{-1} (R_0)$$

$$0 < \sigma_i \le \sigma'_i$$

$$\mu_{Ri} > 0$$

The approach for accuracy reliability allocation

Choose a reasonable machining grade

Table 1 : The tolerance in different machining grade (μm)

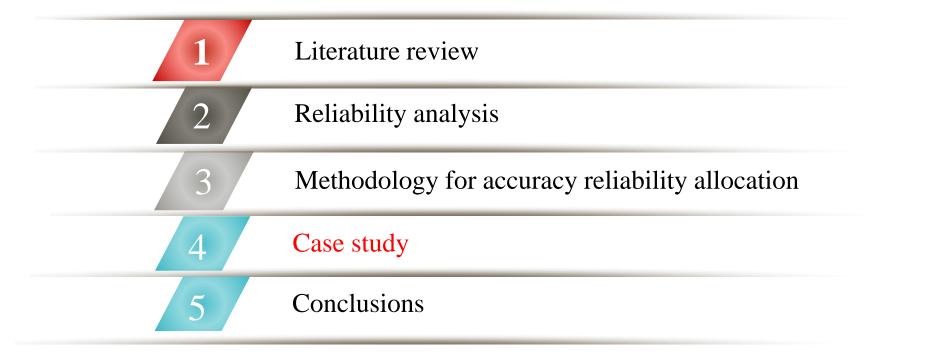
$D \leq 500$ /k TOK TOK	231 401 041	100k 100k 230k 400k	0+0K 1000K 1000K 2300K
$D \leq 500 \qquad 7k 10k 16k$	23K 40K 04K	100k 100k 230k 400k	640k 1000k 1600k 2500k

$$k = \begin{cases} 0.45\sqrt[3]{D} + 0.001D(\mu m); D \le 500mm \\ 0.004D + 2.1(\mu m); 500 < 500 \le 3150mm \end{cases}$$

where, *D* is the component length

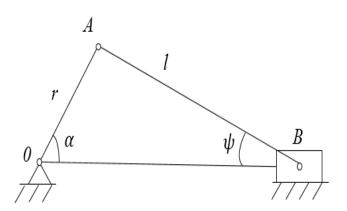
$$h = \left[\frac{T_{ci}}{k}\right]$$

where, *h* is a maxint among these values (7, 10, 16, 25, 40, 64, 100,...,1000, 1600, 2500) that smaller than T_{ci}/k The final component tolerance: $T_{ci}' = hk$



Case study

Assumption 1: The rotation angle α is an ideal value. $\Delta \alpha = 0$ **Assumption 2:** The component dimension deviation is symmetric. $\mu_i = 0$



The Slider-crank mechanism

The length of OA	The length of AB	The rotation angle	Required reliability
<i>r</i> =20 <i>cm</i>	<i>l</i> =40 <i>cm</i>	$\alpha = 90^{\circ}$	$R_0 = 0.942$

The error characteristic values of output displacement	The wear rate characteristic values of the material	Working time
$(\mu_0, \sigma_0) = (0.95, 0.01)(cm)$	$(\mu_v, \sigma_v) = (0.06, 0.0033) (cm/kh)$	t=20kh

Case study

The wear rate meets the required reliability ?

$$\mu = 0$$

$$\sigma^2 = 0.2675$$

$$R = \phi \left(\frac{0.95 - 0}{\sqrt{0.01^2 + 0.2675}} \right) = 0.97$$

Obviously, $R > R_0 = 0.942$, which indicates the meeting of error allocation.

The optimal results

Design variable	Optimal result /cm
σ_r	0.071
σ_l	0.139
μ_R	0.149
σ_R	0.081

$$T_r = 6\sigma_r = 0.426cm$$
$$T_l = 6\sigma_l = 0.834cm$$

$$k_r = 0.45\sqrt[3]{200} + 0.001 \times 200 = 2.83(\mu m)$$

$$k_l = 0.45\sqrt[3]{400} + 0.001 \times 400 = 3.71(\mu m)$$

! According to Table 1

 $h_r = \left[\frac{T_r}{k_r}\right] = 1000$ $h_l = \left[\frac{T_l}{k_l}\right] = 1600$

The final optimal tolerance

 $T_r' = h_r k_r = 1000 \times 2.83 \mu m = 0.283 cm$ $T_l' = h_l k_l = 1600 \times 3.71 \mu m = 0.5936 cm$

Case study

The final optimal results

Design variable	Optimal result /cm
σ_r'	0.047
$\sigma'_r \ \sigma'_l$	0.099
μ_R	0.149
σ_R	0.081

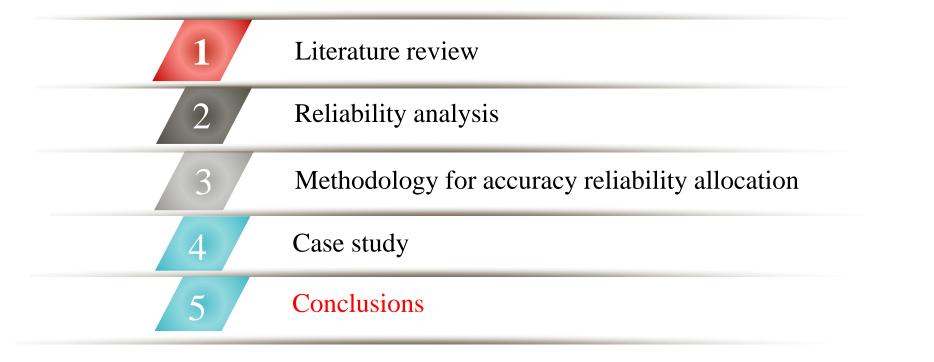
when a designer conducts the SCM accuracy design, the component parameters must meet the values as following

component tolerance:

 $T_r' = h_r k_r = 1000 \times 2.83 \,\mu m = 0.283 cm$ $T_l' = h_l k_l = 1600 \times 3.71 \,\mu m = 0.5936 cm$ **Reliability allocation results:**

 $r = 20^{+0.1415}_{-0.1415} \qquad l = 40^{+0.2968}_{-0.2968}$

The joint-gap characteristic value is (0.149,0.081)



Conclusions

- This paper provides a new methodology for mechanism kinematic accuracy reliability allocation.
- The reliability allocation can be regarded as the error allocation by establishing the kinematic accuracy reliability function about errors considering wearing.
- The reliability index can be allocated to the component level and designed through embodying in the tolerance of component size and joint-gap.

