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ABSTRACT: In this work, we address the issue of stochastic model uncertainty on the optimal design for
accelerated degradation tests. All three candidate models, i.e. Wiener, Gamma and inverse Gaussian, are con-
sidered in the degradation modelling and averaged by the posterior model probability with the Bayesian model
averaging method. The averaged model is proposed to integrate the contributions from each model. After that,
the objective function is constructed to minimize the posterior asymptotic variance of the estimate of the p−th
quantile lifetime at the use conditions, where the sample size allocation, inspection times and stress levels are
treated as the decision variables. In the illustrative example, the simulated stress relaxation data under three
temperature stress levels is used to analyze the effect of model uncertainty on the optimal plan. Sensitivity study
is also given to robustness of the optimal plan on the variation of parameters and model posterior probabilities.

1 INTRODUCTION

Accelerated degradation testing (ADT) is generally
used for lifetime and reliability evaluation for highly
reliable products that no failure data are available in
traditional reliability tests (Nelson 1990). In order to
effectively conduct ADT with the limited resources,
special attention is given to the total costs (Tang et al.
2004), the estimation precision of the lifetime (e.g. the
asymptotic variance of the p−quantile, see Liao et al.
(2006) and Pan et al. (2009)), or the approximate vari-
ance of the estimated mean time to failure (MTTF)
(Tseng et al. 2009), etc. For designing the optimal
ADT plan, the aforementioned factors will be chosen
as the target with the constraints of sample size or the
total costs that of interest, to compute the optimal plan
consisting of sample size allocation, inspection times
and stress levels, and also ensure the precision of the
reliability evaluation results.

For the sake of designing ADT plan, degradation
models should be selected through either degradation-
path (Yu 2003) or statistical data-driven (Ye and Xie
2015).With the time-dependent structure which is suit-
able for describing the temporal variation of the degra-
dation process, stochastic process models are widely
used for degradation modelling, i.e. Wiener process,
Gamma process and inverse Gaussian process.

Lim & Yum (2011) assumed that the degradation
paths follow the Wiener process, and obtained the
optimal constant stress ADT (CSADT) plan with the
stress levels and the allocated tested samples through
minimizing the q−quantile of the lifetime at the use
conditions. Then, Hu et al. (2015) studied the optimal

plan design for step stress ADT (SSADT) under the
Wiener degradation assumption. Tseng et al. (2009)
considered the situation that the degradation paths are
monotonous, especially for the fatigue degradation
process, and selected Gamma process as the degrada-
tion model to design the optimal SSADT through min-
imizing the approximated variance of the estimated
MTTF with the constraint of total cost, while the deci-
sion variables are sample size, inspection frequency
and time. Moreover, Tsai et al. (2012) considered the
random effect due to the variation of samples to con-
duct optimal plan design based on Gamma process.
Recently, Ye et al. (2014) performed the optimal plan
design based on inverse Gaussian process model which
has more flexible structures to capture the uncertain-
ties, e.g. random drifts model, random volatility model
and random drift-volatility model, see Wang and Xu
(2010), Peng et al. (2014), Ye and Chen (2014) and
Peng (2015).

In traditional design of ADT plan, the degradation
model is assumed without considering the problem of
model uncertainty, which has been shown that it will
lead to significantly different reliability and lifetime
evaluation results, see Yu and Chang (2012) and Liu
et al. (2016). To account for such uncertainty, Zio and
Apostolakis (1996) introduced two methods which are
adjustment factor that nominates one reference model
and updates it with new data, and model averaging to
mixture all the candidate models. For the adjustment
factor method, Tseng and Lee (2016) proposed a class
of exponential-dispersion degradation models to com-
plete the optimum allocation for 2-level and 3-level
ADT, which can capture all three candidate models
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as its limiting cases with different choices of param-
eter d. While in this study, we will analyze the effect
of model uncertainty on optimal plan design through
Bayesian model averaging (BMA) method to integrate
the contributions of each candidate model.

This paper is organized as follows: Section 2 intro-
duces the methodology for ADT planing through
BMA. Simulation study is performed to illustrate the
proposed method in Section 3. Sensitivity study is
given to the variations of parameters and model pos-
terior probabilities on the optimal plan in Section 4.
Section 5 concludes this paper.

2 ADT PLANNING THROUGH BAYESIAN
MODEL AVERAGING

2.1 Degradation and acceleration models

Let us denote the three candidate models by Mc, c =
1, 2, 3 for Wiener, Gamma and inverse Gaussian pro-
cesses. In general, we define the degradation path X (t)
as

• ∀t2 > t1 ≥ s2 > s1, X (t) has independent increments,
that is, X (t2) − X (t1) and X (s2) − X (s1) are inde-
pendent.

• ∀t ≥ s > 0,X (t) − X (s) follows normal (M1), Gamma
(M2) and inverse Gaussian (M3) distributions,
whose mean and variance are proportional to �(t) −
�(s).

To present the stochastic degradation model uncer-
tainty, the mean and variance for X (t) are given
as

where �(t) is the time-transformation.
For simplicity, let USP(a, b) denote the unified

stochastic model with specific definitions of a and b
for all candidate models. Table 1 gives the correspond-
ing parameters for Mc. For acceleration model which
shows the relationship among different stress levels,
the log-linear formula is generally used as

where α0 and α1 are two unknown parameters, and
si ∈ [0, 1], i = 1, 2 . . . K is the normalized stress level
after (Lim and Yum 2011).

Moreover, the p−quantile lifetime at the use condi-
tions for USP(a, b) is (Liu et al. 2016)

where α = σ√
ωµ

, β = ω
µ

, zp is the p−quantile of the

standard normal distribution and �−1( · ) is the inverse
function of �( · ). Based on the asymptotically normal

distribution, the asymptotic variance of tp can be given
as

where I(θ) is the expected Fisher information matrix.
To guarantee the prediction precision of the quantile
of lifetime distribution at the use conditions, efforts
have been devoted to minimize (4) with the assumed
degradation model, see Yu (2003), Liao et al. (2006),
Lim and Yum (2011) and Ye et al. (2014).

2.2 Bayesian model averaging

The problem of model uncertainty can be intuitively
solved through Bayesian model averaging method with
the contribution of each model averaged by the model
posterior probabilities (Hoeting et al. 1999).

Assuming that � is the quantity of interest, it poste-
rior distribution with the given data D can be presented
as

where Pr(Mc|D) is the posterior probability of Mc
given data D, that is

where

is the integrated likelihood of model Mc.
For �, its posterior mean is

and its variance is

where �̂c = E[�|Mc, D].

2.3 Optimization problem

For single model Mc, we can simply take (4) as the
objective function with the constraints of sample sizes
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Table 1. Parameter definition for three candidate models.

Wiener process Gamma process Inverse Gaussian process

Models Mean STD Shape Scale Mean Shape

µ�(t)
√

σ2�(t) µ2�(t)
σ2

σ2

µ
µ�(t) µ3�2(t)

σ2

Parameters a b a b a b

and time to find the optimal sample allocation, inspec-
tion times and stress levels. The optimization problem
can be organized as

When accounting for model uncertainty, the objec-
tive function should be the posterior variance of t̂p
with (9) where � = tp. To simplify the calculation of
Var[t̂p|D], we replaced Var[t̂p|Mc, D] in (9) by Avar(t̂c

p)
in (4) for each candidate model. Both of this two for-
mulas present the variance of the p−quantile lifetime
at the use conditions but that one is from the MLE
analysis, while the other one is from Bayesian analysis
which is time-consuming.

In this way, we can at first compute optimal plan for
model Mc and Avar(t̂c

p) with theADT data D, then com-
pute the model posterior probability Pr(Mc|D) through
BMA analysis, and finally produce the Var[t̂p|D],
which is the new objective function capturing the
model uncertainty, that is

Figure 1. The simulated stress relaxation CSADT data
under three temperature stress levels.

2.4 Statistical inferences

Suppose that X (tijk ) is the kth degradation value
of unit j under the ith stress level at time tijk , i =
1, 2, . . . , K , j = 1, 2, . . . , ni, k = 1, 2, . . . , mi, where K
is the number of stress levels, ni is the number of test
samples under the ith stress level and mi is the number
of measurements. Given that xijk = X (tijk ) − X (tij(k−1))
is the degradation increment for CSADT with the time
increment �ijk = �(tijk ) − �(tij(k−1)), the likelihood
function of ADT data D is

The estimates of θ = [α0, α1, σ, γ] can be obtained
by maximizing its logarithm formulation, l(θc|Mc, D),
with the definitions in Table 1.

3 ILLUSTRATIVE EXAMPLE

The stress relaxation data is simulated in order to
illustrate the problem of stochastic degradation model
uncertainty on designing optimal ADT plan. Figure 1
shows the degradation paths for 18 samples under three
temperature stress levels (six at each level), i.e. 65, 85,
100 ◦C with the settings in Yang (2007). Note that the
electrical connector will fail when its stress relaxation
comes over 30%, that is to say, ω = 30. The normal
condition s0 is 40◦C.
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Table 2. Parameter estimation for single model.

Acceleration Degradation

Models α0 α1 σ γ lmax

M1 –3.4857 2.8951 0.4222 0.2997 –74.6
M2 –2.9438 1.0417 0.1922 0.4381 55.1
M3 –3.6858 1.2253 0.2606 0.5181 54.8

Table 3. Optimal plan for 2-level CSADT.

Samples Inspection Stress

Models n1 n2 m1 m2 s1 s2 std(t̂p)

M1 8 2 96 4 0.59 1 3.32e9
M2 7 3 84 16 0.59 1 7.44e5
M3 5 5 67 33 0.73 1 2.54e5
BMA 7 3 82 18 0.61 1 7.16e5

The simulated stress relaxation CSADT data under
three temperature stress levels.

With each stochastic degradation model, the
unknown parameters can be estimated through the sta-
tistical method in Section 2.4. The results are listed in
Table 2. Given from the lmax from Table 2, Gamma
process model is the most suitable one with the largest
value, which can be further used for designing opti-
mal ADT plan. However, this process maybe ignored
in real applications with the assumption of the degra-
dation model, or this selection maybe unappropriate
for designing ADT plans without the consideration of
model uncertainty.

Assuming that we have N = 10 available samples
and M = 100 inspection times (time interval is twenty-
four hours), ADT planning can be conducted using
(10) with the parameters in Table 2 fixed, and the p =
0.1 quantile of the lifetime at the use conditions is
that of interest. Table 3 shows the optimal two-level
CSADT plans for single model.

Given from Table 3, the optimal second stress level
is the same for three candidate model (s2 = 1, i.e.
100◦C). However, the sample allocations, inspection
times and the first stress level are different with dif-
ferent choice of the degradation model. For instance,
8/2 samples and 96/4 inspections with s1 = 0.59 will
be given for the ADT plan if M1 is chosen, while 7/3
and 84/16 with 0.59 for M2, and 5/5 and 67/33 with
0.73 for M3. Hence, significant different plans will
be proposed for different selections of the degrada-
tion models, which means the stochastic degradation
model uncertainty has effect on designing the opti-
mal plan. Also, M2 is treated as the most suitable
model from Table 2 but without the highest prediction
precision.

The BMA method given in Section 2.2 is used to
accounting for such uncertainty. The results show that

the posterior model probabilities for each model are
Pr(M1|D) = 0, Pr(M2|D) = 0.5628 and Pr(M3|D) =
0.4372, respectively.

The new optimal plan can be obtained from (11),
which is listed at the end of Table 3. For BMA
model, the optimal plan is consistent with M2 for the
sample allocations (n1 = 7, n2 = 3), but has the com-
promised inspection times (m1 = 82, m2 = 18) and the
first stress level (s1 = 0.61, i.e. 74◦C) with higher
precision (7.16e5 < 7.44e5) through utilizing the pre-
diction capacity of M3.

Therefore, the BMA model can not only account
for model uncertainty, but also integrate all the advan-
tages from each candidate model, which is useful for
designing ADT plan in real applications with no such
knowledge about the selection of degradation model.

4 SENSITIVITY ANALYSIS

In this section, both the influences of parameters and
model posterior probabilities on the optimal 2-level
CSADT plan will be studied to observe the robustness
of the optimal plan.

4.1 The variation of parameters

The optimal plan depends on the true values of the
unknown parameters θ. In order to analyze the robust-
ness of the BMA model which accounts for the
contributions from three stochastic degradation mod-
els, we set the true values as α0 = −2, α1 = 1.5, σ =
0.5, γ = 0.4 and the variations into three levels, i.e.
+10%, 0, −10%, given in the first four columns of
Table 4 according to a L9(34) orthogonal array. Mean-
while, the contributions are treated as equal for each
model, i.e. Pr(Mc|D) = 1/3. With the same settings
about the CSADT in Section 3, the results are listed at
the right of Table 4.

Given from the results, the optimal plan is quite
robust with slightly change in samples allocation (only
the third one has one more sample in s1), inspections
times (the deviation is nine), and stress level one s1
(the deviation is 0.10, from 61.5◦C to 67.4◦C). It
is interesting to see that the variance of the p = 0.1
quantile lifetime varies from 2.72e4 to 2.22e6. Hence,
the prediction precision is effected by the variation of
parameters.

4.2 The variation of model posterior probabilities

When accounting for the model uncertainty, the opti-
mal plan also depends on the model posterior proba-
bilities which present the contributions of each model.
Hence, this section will study this effect under three
levels for each model, see the first three columns of
Table 5. The settings for parameters and ADT plans
are the same with that in Section 4.1.

Given from the results, the optimal plan varies
with different model posterior probabilities, especially
when that for M1 increases, and more samples and
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Table 4. Sensitivity analysis of the variation of parameters on the optimal 2-level CSADT plan.

ε1 ε2 ε3 ε4 n1 n2 m1 m2 s1 s2 std(t̂p)

+10% +10% +10% +10% 7 3 80 20 0.46 1 7.71e4
+10% 0 0 0 7 3 84 16 0.45 1 3.59e5
+10% -10% -10% -10% 8 2 88 12 0.41 1 2.22e6
0 10% -10% 0 7 3 81 19 0.48 1 1.90e5
0 0 +10% -10% 7 3 85 15 0.46 1 1.06e6
0 -10% 0 10% 7 3 82 18 0.40 1 5.11e4
-10% +10% 0 -10% 7 3 82 18 0.50 1 5.41e5
-10% 0 -10% +10% 7 3 79 21 0.42 1 2.72e4
-10% -10% +10% 0 7 3 83 17 0.42 1 1.16e5

Table 5. Sensitivity analysis of the variation of model posterior probabilities on the optimal 2-level CSADT plan.

Pr(M1|D) Pr(M2|D) Pr(M3|D) n1 n2 m1 m2 s1 s2 std(t̂p)

1/6 1/3 1/2 6 4 75 25 0.49 1 1.86e5
1/6 1/2 1/3 7 3 79 21 0.51 1 1.90e5
1/3 1/6 1/2 7 3 83 17 0.45 1 1.97e5
1/3 1/2 1/6 7 3 83 17 0.45 1 2.03e5
1/2 1/6 1/3 8 2 88 12 0.39 1 2.07e5
1/2 1/3 1/6 8 2 88 12 0.39 1 2.10e5

inspection times are given in s1. However, the predic-
tion accuracy remains stable with a minor change.

5 CONCLUSIONS

In this work, the BMA method is introduced to ana-
lyze the problem of stochastic model uncertainty on
designing the optimal ADT plan. Through the model
posterior probabilities, the contributions of each can-
didate model are utilized, and the posterior variance of
the p−quantile lifetime at the use conditions is treated
as the new objective function to find the best alloca-
tions of samples, inspection times and stress levels.
The simulated stress relaxation CSADT data shows
that each stochastic degradation model can produce
different optimal plan and prediction precision. Mean-
while, the sensitivity study shows that the optimal plan
is less sensitive to the variation of parameters but to
model posterior probabilities, while that for the pre-
diction precision is reverse. Further research could be
given to the study of the random effects due to the
variation of the tested samples.
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