Nonlinear accelerated degradation analysis based on the general Wiener process

LE LIU, XIAO-YANG LI, TONG-MIN JIANG

School of Reliability and Systems Engineering Beihang University, Beijing, China

Sept. 9, 2015

Contents

Literature Review.

Motivating example for LED.

General Formula for Nonlinear ADT Analysis.

Parameter Estimation.

Results and Discussions.

Future Work.

Literature Review

Why is Accelerated degradation testing ? – High reliability & Long lifespan VS Time constrait.

How to model the data ? – Degradation path-based or **stochastic processes** [1].

What is the main work of the past years ? – Wiener process with linear drift.

Is there any nonlinear data ? – Battery (relative resistance) [2], LED [3], Metal [4]

How to model the nonlinear ADT data ? – Time-scale transformation [5][6].

$$t = 1 - \exp(-\lambda r^{\gamma})$$
 or $t = r^{\lambda}$

Is this model effective ? – The **scope** of this paper.

- 1. Clear physical explanation
- 2. Easy to use
- 3. Good properties

Motivating Example

24 LEDs are tested under two stress conditions: (a) 35mA and (b) 40mA [3]. The normal

operating condition is 25mA.

Results in References: In [3], the estimate of MTTF is 1346 hours through degradation-path model. While in [6], the 95% confidence interval of the MTTF is [1848,57202] hours through time-scale transformation Wiener process model. Wiener process model.

The differences are significant !!!

Formulas for Degradation Modeling

The time-scale transformation model [6]: $M_1: X(t) = \mu \Lambda(t; \theta) + \sigma B(\Lambda(t; \theta))$ (1)

The general Wiener process [7]: $M_0: X(t) = \mu \Lambda(t; \theta) + \sigma B(\tau(t; \gamma))$ (2)

where μ and σ are the drift (stress-related, $\mu = \eta_0 I^{\eta_1}$) and diffusion coefficients, ϑ and Υ are the two generalization parameters, $\Lambda(t;.)$ and $\tau(t;.)$ are the time-scale transformations.

Difference: the variance

$$M_{0}: \begin{cases} E[X(t)] = \mu \Lambda(t;\theta) \\ \& \\ Var[X(t)] = \sigma^{2} \tau(t;\gamma) \end{cases} \qquad M_{1}: \begin{cases} E[X(t)] = \mu \Lambda(t;\theta) \\ \& \\ Var[X(t)] = \sigma^{2} \Lambda(t;\theta) \end{cases}$$

First Passage Time Distribution

$$M_1: \text{ inverse Gaussian distribution } f_1(t) = \frac{\omega}{\Lambda(t)\sqrt{2\pi\sigma^2\Lambda(t;\theta)}} \exp\left(-\frac{\left(\omega - \mu\Lambda(t;\theta)\right)^2}{2\sigma^2\Lambda(t;\theta)}\right) \frac{d\Lambda(t;\theta)}{dt}$$
(3)

$$M_{0}: \text{ the generalization distribution}$$

$$p_{0}(t) = \frac{1}{\sqrt{2\pi\tau(t;\gamma)}} \left(\frac{\omega - \mu\Lambda(t;\gamma)}{\sigma\tau(t;\gamma)} \left(\frac{\omega - \mu\Lambda(t;\gamma)}{\sigma\tau(t;\gamma)} \right) \left(\frac{\omega - \mu\Lambda(t;\gamma)}{\sigma\tau(t;$$

Given $\Lambda(t;\vartheta) = t^{\vartheta}$ and $\tau(t;\Upsilon) = t^{\gamma}$, Eq.(4) is

$$f_0(t) = \frac{\left(\omega\gamma - (\gamma - \theta)\mu t^{\theta}\right)}{t\sqrt{2\pi\sigma^2 t^{\gamma}}} \cdot \exp\left(-\frac{\left(\omega - \mu t^{\theta}\right)^2}{2\sigma^2 t^{\gamma}}\right)$$
(5)

If $\vartheta = \Upsilon$, then Eq.(5) is Eq.(3).

Two-stage Parameter Estimation

Definition: X_{ijk} is the *k*th degradation value of unit *j* at the stress level *i*, *i* = 1,2, ...,*K*; j=1,2,...,*n_i*; $k=1,2,...,m_{ij}$. t_{ijk} is the corresponding measurement time.

Let

$$\begin{aligned}
\mathbf{X}_{ij} &= \begin{pmatrix} X_{ij1}, X_{ij2}, \dots, X_{ijm_{ij}} \end{pmatrix}' & \text{then,} \\
\mathbf{x}_{ij} &= \begin{pmatrix} X_{ij1}, X_{ij2}, \dots, X_{ijm_{ij}} \end{pmatrix}' & \mathbf{x}_{ij} \sim N(\mu_{ij} \mathbf{t}_{ij}, \sigma^2 \mathbf{Q}_{ij}) \\
\mathbf{t}_{ij} &= \begin{pmatrix} A(t_{ij1}; \theta), A(t_{ij2}; \theta), \dots, A(t_{ijm_{ij}}; \theta) \end{pmatrix}' & \text{so,} & \hat{\mu}_{ij} \mid \theta, \gamma = \frac{\mathbf{X}'_{ij} \mathbf{Q}_{ij}^{-1} \mathbf{t}_{ij}}{\mathbf{t}'_{ij} \mathbf{Q}_{ij}^{-1} \mathbf{t}_{ij}} & (6) \\
\mathbf{Q}_{ij} &= \begin{bmatrix} \tau(t_{ij1}; \gamma) & \tau(t_{ij2}; \gamma) & \cdots & \tau(t_{ij2}; \gamma) \\ \vdots & \vdots & \ddots & \vdots \\ \tau(t_{ij1}; \gamma) & \tau(t_{ij2}; \gamma) & \cdots & \tau(t_{ijm_{ij}}; \gamma) \end{bmatrix} & \hat{\sigma}^2 \mid \theta, \gamma = \frac{\sum_{i=1}^{K} \sum_{j=1}^{n_i} (\mathbf{X}_{ij} - \hat{\mu}_{ij} \mathbf{t}_{ij})' \mathbf{Q}_{ij}^{-1} (\mathbf{X}_{ij} - \hat{\mu}_{ij} \mathbf{t}_{ij})}{\sum_{i=1}^{K} \sum_{j=1}^{n_i} m_{ij}} \\
\end{aligned}$$

Two-stage Parameter Estimation

Stage 1. Parameters in degradation model ϑ , Υ , σ and μ_{ii}

Profile likelihood function:

$$l(\theta, \gamma | \mathbf{X}) = -\frac{\ln(2\pi)}{2} \sum_{i=1}^{K} \sum_{j=1}^{n_i} m_{ij} - \frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{n_i} \ln |\hat{\sigma}^2 \mathbf{Q}_{ij}| \qquad (8)$$
$$-\frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (\mathbf{X}_{ij} - \hat{\mu}_{ij} \mathbf{t}_{ij})' \hat{\sigma}^{-2} \mathbf{Q}_{ij}^{-1} (\mathbf{X}_{ij} - \hat{\mu}_{ij} \mathbf{t}_{ij})$$

- ϑ and Υ can be computed by Eq.(8) through *Fminsearch* function in Matlab.
- Substituting ϑ and Υ to Eq.(6) and (7), σ and μ_{ii} will be given.

Stage 2. Parameters in acceleration model η_0 , η_1

• MLE method:

$$\log(\hat{\mu}_{ij}) = \log\eta_0 + \eta_1 \log I_i$$

d (7),
$$\sigma$$
 and μ_{ij} will be given.

ESREL 2015, Zürich, Switzerland

Results for the LED case

Parameter Estimation

Models	Degradation Model			Accelerati	on model	,	AIC	
	ϑ	γ	σ^2	η_{0}	η_1	/ _{max}	AIL	
M ₀	0.4415	0.1172	73.7836	0.2284	0.7257	-310.39	630.78	
<i>M</i> ₁	0.4503		5.8400	1.804e-5	3.2968	-316.98	641.97	

According to the AIC index, model M_0 performs better than M_1 on LED ADT data fitting.

However, the differences among degradation and acceleration models are significant. The

problem of mis-specification of basic degradation model is **serious**.

Model fitting and PDF of FPTs

Parameter

Confidence Intervals

Models	95% CI (hours)	Comments
M ₀	[232, 2622]	In accordance with the results in original paper [3], which is 1346 hours.
<i>M</i> ₁	[1914, 53629]	Over estimated as that in [6], which is [1848,57202] hours

					Results	Results & Discussion		Future Work	
Discussions			Models	Degradation Model			Acceleration model		
			WIDUEIS	ϑ	γ	σ^2	${\eta}_{ m 0}$	$\eta_{\scriptscriptstyle 1}$	
			M_0	0.4415	0.1172	73.7836	0.2284	0.7257	
			<i>M</i> ₁	0.4503		5.8400	1.804e-5	3.2968	

The Variance

 M_0 : $Var[X] = 73.7836 \times t^{0.1172}$

 M_1 : $Var[X] = 5.8400 \times t^{0.4503}$

 \diamond It is interesting that M_0 suggests a good fitting (AIC & Q-Q plot)

but has larger variance than M_1 .

🔷 The influence of variance modeling is significant on ADT analysis. 🚽

All fails to pass the hypothesis test at the 1% significance level Adstat₀ = 1.6775 < Adstat₁=3.2240

			General Formula	Para	meter	Results a	& Discussior	Future Work		
				Models	Degradation Model			Acceleration model		
Discussions			WIDUEIS	ϑ	γ	σ^2	η_{0}	η_1		
DISCUSSIONS			M_0	0.4415	0.1172	73.7836	0.2284	0.7257		
			<i>M</i> ₁	0.4503		5.8400	1.804e-5	3.2968		

The trap of extrapolation (acceleration model)

 $M_0: \mu = 0.2284 I^{0.7257} \Longrightarrow \mu_0 = 2.3616$

 $M_1: \mu = 1.804 \times 10^{-5} I^{3.2968} \Longrightarrow \mu_0 = 0.7327$

 M_1 give false confidence to the producers on their

products with a significantly lower value of μ_0 .

This PITFALL is discussed by Meeker and Escobar (1998), named "Multiple time-scales and multiple factors affecting Degradation".

ESREL 2015, Zürich, Switzerland

Summary

The general Wiener process is introduced to analyze the nonlinear accelerated degradation data, which can cover the common used linear and time-scale transformation Wiener processes as its limiting cases.

The LED case shows that this method fits better than time-scale transformation model and can provide reliable lifetime estimation results.

> When using ADT for lifetime and reliability evaluation, one should avoid the trap of extrapolation though increasing the number of stress levels and samples.

Future Work

- The consideration of unit-to-unit variation
- Nonlinear Step Stress ADT (SSADT) data
- > Optimum plan design with the general Wiener process

References

[1] Ye, Z.-S. & Xie, M. 2015. Stochastic modelling and analysis of degradation for highly reliable products. Applied Stochastic Models in Business and Industry 31(1): 16-32.

[2] Thomas, E. V., Bloom, I., Christophersen, J. P. & Battaglia, V. S. 2008. Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing. Journal of Power Sources 184(1): 312-317.

[3] Chaluvadi, V. 2008. Accelerated life testing of electronic revenue meters. Master, Clemson University.

[4] Meeker, W. Q. & Escobar, L. A. 1998. Statistical methods for reliability data, New York, John Wiley & Sons.

[5] Whitmore, G. A. & Schenkelberg, F. 1997. Modelling Accelerated Degradation Data Using Wiener Diffusion With A Time Scale Transformation. Lifetime Data Analysis 3(1): 27-45.

[6] Tang, S., Guo, X., Yu, C., Xue, H. & Zhou, Z. 2014. Accelerated Degradation Tests Modeling Based on the Nonlinear Wiener Process with Random Effects. Mathematical Problems in Engineering.

[7] Wang, X. L., Jiang, P., Guo, B. & Cheng, Z. J. 2014. Real-time Reliability Evaluation with a General Wiener Process-based Degradation Model. Quality and Reliability Engineering International 30(2): 205-220.

Acknowledgements

The financial support by the National NSFC (No. 61104182) and the Fundamental Research

Funds for the Central Universities (No. YWF-14-KKX-004) are gratefully acknowledged.

Thanks and Questions!