
ABSTRACT 
 
The ultimate goal of Prognostics and Health Man-
agement (PHM) is to actively manage system health 
and accurately provide maintenance policy (Zio 
2012). Remaining useful life (RUL) is an essential 
index for such purpose. When monitoring system 
performance data, varies of methods can be used for 
data fitting and the capability is highly depend on 
the generalization ability of the selected methods 
and the nature of data. However, for high-reliability 
and long-life products, it is difficult to get sufficient 
data to capture the degradation trend of the system 
even for a long time. Meanwhile, the correctness of 
the selection is hard to verify. 

In order to select an applicable RUL prediction 
algorithm for such products, like battery, pump, etc. 
we consider the period before them putting into 
market, which is called the in-field development 
phase. Information about product design, tests, phys-
ical failure mechanism, etc. will be collected in this 
period. If those data can be used for building usage-
oriented RUL prediction model, model selection will 
be a less problem for customers to understand the 
current health status of their products. Thus, we pro-
pose an experiment-based PHM framework to over-
come the shortcomings. 

Three time points at the in-field phase are consid-
ered: pre-design, final-design and trial. Firstly, simu-
lation testing is given at pre-design stage using pro-
fessional software, like AutoCAD, ANSYS, 
FLUENT. The purpose of this stage is to find the 
weakest link of the product design at component 
level and enhance system reliability by design modi-
fication. When accomplishing the correction loop, 
system degradation behavior can be simulated at the 
same time, based on which degradation modelling or 
algorithm selection can be undertook. We define the 
applicable model as M1. Secondly, when it comes to 
final-design, accelerated testing is normally used to 
accelerate system degradation process since time is 
limited and precious for long-life products. Based on 

the failure/degradation data and accelerated model 
from simulation test, life prediction models can be 
updated from M1 to M2, which can be new models or 
partially from M1, according to accelerated data. For 
instance, Weibull and exponential distributions are 
normally used for modelling failure time data, while 
degradation path-based, data-driven and stochastic 
processes for degradation behavior modelling. The 
relationship between stresses and degradation rate is 
handled by accelerated models like Arrhenius model 
(temperature), Eyring model (voltage) and others. 
Finally, trial test is conducted to examine system re-
liability under typical operation conditions. Accord-
ing to M1 and M2, the initial life prediction system 
will be set up and verified through trial test. Then, 
the collected information will upgrade the model 
from M2 to M3, which is much similar to the real op-
eration model set M4 that can be used for field RUL 
prediction by single prediction model with the high-
est prediction accuracy or the combined models 
from M3. Overall, the tests at the in-field develop-
ment phase contribute to the building of usage-
oriented life prediction model set, achieving accu-
rate life prediction results and right maintenance 
policy, which is significant different from that in 
traditional PHM methodology where the life predic-
tion modelling mainly uses field monitoring data. 

This paper presents the abovementioned experi-
ment-based PHM methodology to improve the selec-
tion of life prediction model and data acquiring 
problems for high-reliability and long-life products 
in traditional PHM technique through the compre-
hensive use of in-field experimental information. 
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1 INTRODUCTION  

Prognostics and Health Management (PHM) tech-
nique is to manage product health status through uti-
lizing monitor information, do decision-making be-
fore failure happens and avoid catastrophe events, 
while reducing life cycle cost. The development of 
PHM represents that the focus of current reliability 
engineering has come into a new stage extended 
from quality-centered to service-centered, which can 
provide customers timely and reliable health infor-
mation about their products and manage them 
properly. Among the service indexes, customers are 
mainly concerned about the Remaining Useful Life 
(RUL) which is to answer how much time is left for 
products to perform well. This demand promotes the 
deeper research on RUL prediction during the past 
decades, which is widely used in prognostics and 
maintenance scheduling for machinery, electronics 
and other products. The core of RUL research is to 
set up life prediction model whose accuracy will 
definitely affect the follow-up maintenance activity. 

Traditional PHM extracts performance degrada-
tion pattern from real-time monitoring signal data or 
acquire degradation parameter data directly. Based 
on that information, life prediction model can be 
given according to the nature of data or the generali-
zation capability of the selected models to capture 
the time-varying performance. However, it is diffi-
cult to verify whether the model itself is reasonable 
accuracy which will definitely increase the potential 
risk of product operation. Meanwhile, the advanced 

technology promotes the emergence of high-
reliability and long-life products, which make it 
even harder to collect sufficient data for capturing 
the degradation process of such products in a limited 
time, especially for newly ones. Thus, traditional 
PHM technique faces the problem of life prediction 
modelling for the new generations which is high 
risky and less cost effective. 

This paper at first reviews the existing research of 
traditional PHM in life prediction aspect and pro-
poses an experiment-based PHM framework to 
overcome the abovementioned shortcomings. The 
usage-oriented life prediction model set is given at 
the in-field development phase and integrated with 
operational data to do health evaluation and mainte-
nance decision-making. The rest of this paper is or-
ganized as follows. In Section 2, the research status 
of life prediction methods is analyzed and the exist-
ing problems are pointed out. The new framework is 
presented in Section 3 and three stages are mainly 
introduces, i.e. pre-design, after-design and field 
use, with related research contents for life prediction 
modelling. The flexibility of the framework is veri-
fied by case studies in Section 4. Section 5 con-
cludes this paper. 

2 REVIEW OF LIFE PREDICTION METHODS 
FOR PHM METHODOLOGY 

RUL represents the length of time when product per-
formance degrades below failure threshold or cannot 
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ABSTRACT: Currently, the focus of reliability engineering has been extended from product design quality to 
product service, which drives the research on Prognostics and Health Management (PHM) methodology to 
provide timely and reliable service information about the health status of product. However, traditional PHM 
technique mainly concentrates on usage information which leads to the shortcomings of prediction modelling 
problems, especially for high-reliability and long-life products. This paper proposed an experiment-based 
PHM life cycle framework, aiming to integrate information from the in-field development phase to provide 
usage-oriented life prediction model set. When the on-line monitoring data is available, model set can be up-
dated to acquire accurate prediction results and ensure effectively maintenance activity. In this paper, the life 
cycle is divided into seven stages and related modelling processes are given with specific case studies. 



meet the requirements, which is the key research of 
Condition Based Maintenance (CBM) and PHM 
(Jardine et al. 2006, Si et al. 2011). The RUL predic-
tion methods can be divided into three categories: 
model-based (also called physical-based), data-
driven and hybrid modelling (Heng et al. 2009, Zhou 
et al. 2013). Nevertheless, model-based methods re-
quire that the failure mechanism is known or degra-
dation process can be analytical expressed, which 
cannot be applied for complex products, while data-
driven methods is widely used since there is no need 
to know about the physical property. However, the 
prediction accuracy highly depends on the generali-
zation capability of the selected models. The hybrid 
models integrate the strengths of both model-based 
and data-driven methods, which still cannot ensure 
the prediction accuracy. 

The present research of RUL prediction in PHM 
technique mainly concentrates on product usage in-
formation. For the high-reliability and long-life 
products, the existing prediction methods have the 
following two problems: 
 Data: How to collect sufficient monitoring data 

for the purpose of capturing the degradation pro-
cess in a limited time? 

 Model: How to establish reasonable life predic-
tion models and simultaneously verify them for 
new products? 
For the data problem, some research integrates 

expert knowledge or historical information with 
monitoring usage data. Zio & Di Maio (2010) pro-
posed a similarity-based RUL prediction approach 
which utilizes the fuzzy similarity between system 
measurements with the reference failure trajectory 
patterns by giving related weights. Similar research 
refers to Wang (2011). Vaidya & Rausand (2011) 
studied the life extension problems of the equipment 
in offshore oil and gas industry which considers the 
influence of expert judgment, operational and envi-
ronmental conditions, initial system state, etc. on 
RUL prediction. Chen & Tsui (2013) proposed a  
two-phase modelling method based on degradation 
signals which combines historical data with real-
time monitor data to improve the RUL prediction re-
sults through Bayes theorem. Considering that in-
field experiments, like Accelerated Testing, can 
shorten the test time effectively and gather perfor-
mance degradation information rapidly for life pre-
diction. Liao & Tian (2013) researched degradation 
modelling based on drift Brownian Motion and used 
Accelerated Degradation Testing (ADT) data to do 
model validation and parameters’ evaluation, then 
the results are used as prior information for product 
RUL prediction under time-varying operational con-
ditions. Similarly, Li et al. (2013) proposed an ap-
proach to build life prediction model based on deg-
radation data under accelerated stress levels and the 
evaluated parameter results are used as prior infor-
mation for RUL prediction in normal stress level. 

The case study shows that the proposed approach 
has a satisfactory prediction results even under the 
condition that field monitoring data is insufficient. 

As for the model problem, researchers mainly do 
model comparison or combination to get the appli-
cable prediction model. Saha et al. (2009a) com-
pared several typical algorithms for battery RUL 
prediction, like Autoregressive Integrated Moving 
Average (ARIMA), Support Vector Machine 
(SVM), Relevance Vector Machine (RVM), etc. and 
results shows that integrated Bayesian regression 
and estimation methods, like SVM-PF, has signifi-
cant prognostic advantage than traditional ARIMA 
and Extended Kalman Filter (EKF) methods. Then, 
Saha et al. (2009b) furthered this study. Caesarendra 
et al. (2010) studied the prognosis of complex de-
vices based on sequential Mento Carlo method 
which shows a potential capability to predict trend 
data. Zio & Peloni (2011) proposed a RUL predic-
tion method for non-linear component based on par-
ticle filtering (PF). Liu et al. (2012) proposed a data-
model-fusion framework to improve the accuracy of 
long-term system state prediction results. Similarly, 
Zhao et al. (2013) offered a reliability prediction 
method which integrates PF and Support Vector Re-
gression (SVR). Details about the hybrid prognosis 
algorithms in engineered system, readers are re-
ferred to Liao & Kottig (2014). 

The above research papers partially answer the 
questions on both data and model for life prediction 
of high-reliability and long-life products. However, 
as described in Lee et al. (2014), explanation docu-
ments about the reason why select some specific 
prognosis algorithms still lack, which constrain the 
RUL prediction research into practical applications. 
Meanwhile, if we choose them blindly without rea-
sonable basis, future life prediction activities will be 
extremely dangerous. 

In order to solve those problems, we transfer the 
line of sight to the process before product put into 
market which is called the in-field development 
phase. In this phase, many experiments are conduct-
ed to ensure the requirement of high reliable and 
long life, among which reliability tests are the most 
important part. Through repeating the process of 
test-failure-fix, product life and reliability levels can 
be guaranteed to meet the design requirements 
(Collins et al. 2013). Meanwhile, this phase will ac-
cumulate a wealth of important information, such as 
failure mechanism, key components, accelerated 
testing data, etc. If those information can be properly 
utilized to build usage-oriented prediction model set, 
the life prediction problems for current PHM tech-
nique will be solved. Hence, an experiment-based 
PHM framework is proposed to make up the short-
comings for high-reliability and long-life products. 
The usage-oriented model set will also be verified at 
the in-field phase. When field monitoring data is 
available, the model will be updated and improved 



correspondingly to ensure the accuracy of life pre-
diction results and maintenance activities. 

3 THE EXPERIMENT-BASED PHM LIFE 
CYCLE FRAMEWORK 
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Figure 1. The experiment-based PHM life cycle framework. 
 
For the purpose of solving existing life prediction 
problems in PHM, the experiment-based life cycle 
framework is proposed by integrating testing tech-
niques at the in-field develop phase, including seven 
different stages which are pre-design, final-design, 
trial, manufacturing, field use, re-manufacturing and 
cycling, as shown in Figure 1. It should be men-
tioned that not all products experience these stages. 

With the main line of life cycle stages, we intro-
duce the interdependent relationship of the data and 
model under this framework, and provide their sup-
port for life prediction modelling. 

In pre-design stage, which is also called concept 
demonstration phase, the feasible way is to carry out 
simulation test. According to the historical or similar 
product information and user requirements, we can 
acquire the material, geometric and other attributes. 
Then, product degradation behavior simulation can 
be undertaken based on Physics of Failure (PoF) 
model. This process covers from the determination 
of the degradation mechanism in component level to 
the degradation behavior modelling in system level, 
producing the weakest link of the design and as-
sessing the life and reliability of products. There-
fore, the design will be improved until the specific 
requirements are satisfied. Hence, this stage will set 
up the relationship among performance parameters, 
time and the stresses which is the theoretical life 
prediction model M1. 
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where M represents product material information; 
Ssim represents the specific operational conditions; D 
is the failure threshold. f represents the relationship 
among stresses, material and performance parame-
ters, i.e. P, with time t, while g for stresses, perfor-
mance parameters, threshold and product life T. 

This relationship can be either analytical expres-
sion or data-driven models in accordance with the 
system complexity. 

In final-design stage, in order to assess and verify 
the life and reliability level of product in a limited 
time, life prediction modelling based on accelerated 
testing will be carried out. With the input accelerat-
ed model M1 from simulation test, ADT or ALT 
(Accelerated Life Testing) will be conducted to ac-
quire accelerated data of product. When modelling 
the degradation data, both the models from M1 and 
newly algorithms can be used and the most suitable 
model set, i.e. M2, will be chosen for life prediction. 
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where M12 represents the models inherited from 
M1, while M02 for the new ones. 

Field trial can be arranged into different stages 
according to different purpose. For example, the trial 
is normally arranged into the middle of the devel-
opment phase to reveal the early defect of product 
design, while after the final-design to assess if the 
reliability indexes satisfy the general requirements. 
No matter which stage that is, the field trial can ap-
praise the actual performance level of product alt-
hough that is not exactly the same one for future use. 
In this stage, initial PHM prediction module can be 
set up based on model set [M1, M2]T, including sen-
sor layout, data acquisition system and life predic-
tion algorithms, etc. With the data from typical op-
erational conditions, the most suitable prediction 
sets for field use are selected, M3, which is the us-
age-oriented model set. 
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where the symbol ’ represents model updating. 
In manufacturing, the consistency of production 

quality will be controlled by process monitoring, 
random sampling, etc. However, it is inevitable to 
introduce product variation which should be taken 
into consideration in future life prediction activity. 

The above all stages is called the in-field devel-
opment phase which utilizes the sub-stage data and 
models to provide usage-oriented prediction model 
set M3. The contained models are verified through 
simulation, testing and trial. Therefore, the predic-
tion results can be reasonable and accurate to avoid 
the prediction modelling problems in field actual 
use. 

In field use, the monitoring data, like perfor-
mance degradation, life and failure data, etc. is un-
der actual operational and environmental conditions. 
Thus, the best prediction models or model combina-
tion, M4, can be selected by ranking or assigning 
weights according to the prediction accuracy of M3. 
Apparently, M4 is a subset of M3 but not a null set 



since the modelling process integrates all the infor-
mation related to product. 
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At the end of field use, the product performance 
degrades nearly to the threshold and maintenance 
policy based on RUL should be carried out, like 
keep use after repair, replacement, etc. which can ef-
fectively prolong its life cycle and enhance system 
safety (You & Meng 2013). Just take battery as an 
example. The maintenance policy can provide bat-
tery manufacturing scheme, inventory and other in-
formation. If the battery completely scrap, it will be 
into the cycling stage to collect the raw materials 
and do Failure Mode and Mechanism Analysis 
(FMMA), which can be compared with the results of 
simulation test to adjust model set M1. This im-
provement will be feedback to the battery design of 
next generation, thus to achieve the ecological life 
cycle management. 

Overall, the proposed experiment-based PHM 
framework can utilize all the information from the 
in-field development phase to provide usage-
oriented life prediction set and verify it simultane-
ously, specifically the life and reliability tests before 
products are put into use. This overcomes the short-
comings of traditional PHM technique on model se-
lection and data acquisition in the aspect of life pre-
diction. The framework is applicable to the new 
products which have high-reliability and long-life 
properties, providing technical support for the new 
reliability engineering area which centers in intelli-
gent service. Therefore, it has practical engineering 
value and broad development prospects for the im-
plement of PHM system in engineering applications. 

The specific modelling process for several typical 
stages are given below: 

3.1 Product degradation behavior simulation based 
on PoF models 
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Figure 2. Degradation behavior simulation based on PoF mod-
els. 
 
The goal of product degradation behavior simulation 
is to acquire performance data varying with time un-
der specific conditions and find out the weakest link 
of product design.  

This process uses historical and similar product 
information, and expert knowledge as inputs. The 
output is the theoretical life prediction model set M1 
(Fig. 2). 

Conventional layer classification is the first step 
for product analysis. Then, the related failure mode 
and mechanism, environmental and load conditions, 
and other information should be determined to con-
duct performance simulation in component level. 
Through the transfer function between system and 
component levels, performance simulation in system 
level can be carried out, collecting simulated per-
formance data varying with time under specific con-
ditions. Finally, modelling the degradation process 
with consideration of the failure threshold is to pro-
duce the model set M1. Noting that theoretically 
physical model can be established for product with 
simple failure mechanism, while modern engineer-
ing tools should be used for complicated products. 
Thus, the model set M1 can be analytical functions or 
data-driven models. 

The selected models are applicable to describe 
the properties of product performance which, how-
ever, are under many assumptions, like boundary 
conditions, etc. which may not be suitable for real 
applications. Therefore, more test data is needed to 
verify the feasibility of M1. 

3.2 Life prediction modelling based on accelerated 
testing 
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Figure 3. Life prediction modelling based on accelerated tests. 
 
For high-reliability and long-life products, accelerat-
ed tests are normally used to evaluate its life and re-
liability by experiencing severe stress levels than 
that in normal conditions to accelerate product fail-
ure or degradation process. Thus, sufficient data will 
be obtained in a short period of time and used for 
life prediction modelling. This process is dependent 
on the basis of accelerated model from simulation 
test, i.e. M1, and the sensitive stress to conduct ac-
celerated test. Then, suitable models will be selected 
from M2 based on the test data, see Figure 3. 

This stage is usually first carry out the qualitative 
accelerated tests, such as High Accelerated Life Test 
(HALT), etc. to obtain the stress limit where product 
can still function well. Then, with the input from 



simulation test, quantitative accelerated tests will be 
carried out, such as ALT, ADT, etc. including test 
plan design (Tseng et al. 2009, Liu & Tang 2010) 
and data proceeding (Meeker et al. 1998, Escobar & 
Meeker 2006). For the proceeding of accelerated test 
data, the models from M1 should be verified and 
eliminated the unreasonable ones, while new models 
can be introduced. Therefore, the new level predic-
tion model set is achieved, i.e. M2. 

Being similar to the selected procedure in simula-
tion stage, the models in this stage still need further 
screening process since there are still exist many as-
sumptions, like stress simplification, ignoring multi-
degradation mechanism, etc. 

3.3 On-line predictive maintenance through PHM 
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Figure 4. On-line Life predictive maintenance through PHM. 
 
Traditional PHM technique mainly focus on field 
use information by which to evaluate product health 
status and offer maintenance policy, i.e. CBM (Niu 
et al. 2010, Meng & You 2011). However, this tech-
nique has its limitations when applying to high-
reliability and long-life products. On the contrary, 
the experiment-based PHM framework provides al-
ternative prediction model sets M1, M2 and (or) M3 at 
the in-field development phase, which can be used 
for field life prediction. Figure 4 illustrates this pro-
cess. 

When field monitoring data is available, life pre-
diction can be accomplished by either single model 
with the highest rank or combined models with their 
weights according to the prediction accuracy. Its 
procedure is significant different from the traditional 
selection method without criteria and it can achieve 
reasonable RUL prediction results and ensure the ef-
fectiveness of maintenance decision-making. 

4 CASE STUDIES 

The below several cases are used for describing the 
field RUL prediction modelling based on the infor-
mation from each life cycle stage under the experi-
ment-based framework. It should be noted that par-
tially tests are carried out for the specific 
applications at some stages, but all the information 
collected from this tests do help modelling the RUL 
prediction for field use. 

4.1 Life prediction modelling for Double nozzle 
flapper electro-hydraulic servo valve 

Electro-hydraulic servo valve is a key control unit 
widely used in modern aircraft. In practical applica-
tion, servo valve is susceptible to the effect of the oil 
particle pollution which affects its performance, 
causing the wear of the valve core and sleeve edge. 
The influence mainly includes pressure gain, inner 
leakage, etc. 

For the purpose of evaluating the life and reliabil-
ity indexes of servo valve, both simulation test and 
accelerated test are conducted before that is put into 
use. The information obtained from the two tests are 
used for life prediction modelling according to the 
procedure in Section 3.1 and 3.2. The results are 
shown in Figure 5. At first, the wear of nozzle flap-
per and sliding valve under the influence of oil pol-
lution is simulated through FLUENT software in 
component level, acquiring the wear degradation 
process of structure parameters varying with time 
(Fig. 5a, 5b). Then, the data is used as input for sys-
tem level simulation through transfer function which 
shows the link between components and system 
(Fig. 5c) using AMEsim software. Finally, the deg-
radation behavior of system performance is obtained 
which shows that the pressure gain reduces with 
time, while leakage flow increases. After the simula-
tion test, the collected data is also used for designing 
accelerated plan. The optimal plan is Step Stress 
ADT (SSADT) with 5 stress levels (oil pollution de-
gree) and 3 samples. The monitor interval is 2 hours 
and the performance parameters are pressure gain 
and leakage flow, see Figure 5d. After the test, the 
edges of valve core wear severely. 
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Figure 5. Life prediction modelling for Double nozzle flapper 
electro-hydraulic servo valve. 



Optical Power

Drive Current

Temp. Control 
Current

Env. Temp.

Monitor System

Output Optical Power in Use

Output Optical Power in ADT

(a)

(b)

(c)

(d)(e)  
 
Figure 6. Life prediction modelling based on ADT data and on-
line updating through Bayesian approach for super luminescent 
diode. 

 
Based on the degradation data from simulation 

and accelerated tests, the life prediction models M1 
(Quadratic or linear function) and M2 (drift Browni-
an Motion) can be given by integrating with the fail-
ure thresholds (25% initial pressure gain and 10% 
rated flow-rate). Details are referred to Zhang et al. 
(2014) and Wang et al. (2014). The model set then 
will be used for field life prediction. This modelling 
procedure is also applicable to other products by 
building usage-oriented prediction models and being 
verified for field use, which can definitely guarantee 
the accuracy of prediction results. 

4.2 Life prediction modelling and on-line updating 
for super luminescent diode 

Super Luminescent Diode (SLD) is a kind of one-
way light amplification devices which has excellent 
properties, like wide spectrum, high power. Light 
SLD is one of the key functional modules of fiber 
optic gyroscope, experiencing temperature stress in 
practical use. The inner components degrade with 
time and that decrease the output optical power. 

SLD belongs to high-reliability and long-life 
product which should be in use for several years. If 
the life prediction modelling only rely on field use 
data, sufficient data is needed to capture the degra-
dation process which, however, is hard to acquire 
even for a long time. Thus, the models based on this 
data cannot ensure the prediction results. Before 
SLD is put into market, ADT was carried out at the 
in-field phase. According the procedure from Sec-
tion 3.2, eight samples and four temperature stress 
levels were used in the SSADT (Fig. 6a, 6b). The 
monitoring parameter is the output optical power 
which is shown in Figure 6c. Therefore, the life pre-
diction model M2 (drift Brownian Motion, etc.) can 
be built based on the ADT data. When on-line data 
is available (Fig. 6d), the model is updating with 
time through Bayesian approach. The prediction re-
sults show that this method has higher accuracy than 

the traditional regression method which only uses 
the field data. Meanwhile, monitoring data in a lim-
ited time is enough for modelling the degradation 
process for this kind of product (Li et al. 2013). 

4.3 Life prediction based on combined algorithms 

This case is to describe how to use the usage-
oriented model sets to conduct field RUL prediction. 
Commonly used method is single prediction model 
or combined models with associated weights accord-
ing to their prediction accuracy. Here, we only con-
sider the combined model for life prediction. 

As shown in Section 3.3, the input is the model 
sets, M1, M2 and (or) M3 which are BP neural net-
work (f1), drift Brownian Motion (f2), time series 
model (f3) and particle filtering model (f4). Degrada-
tion data for the particular optical device was col-
lected in field use for 480 hours (Fig. 7a). The first 
half is used for model training, while the rest for val-
idation. Then, training data is fitted by each single 
model and encompassment test is conducted to do 
model selection. The ranking result based on their 
prediction accuracy is f3>f2>f1>f4 and the encom-
passment test rejects model f1. Thus, the other three 
models are combined for RUL prediction in the fol-
lowing process. Combinatorial optimization algo-
rithm, like the particle swarm optimization with im-
munity algorithms (IA-PSO), is used to assign 
weights for the three models (Fig. 7b) which are 
0.288, 0.712 and 0, respectively. Finally, we use the 
rest data to verify the prediction accuracy and the re-
sult is fcom>f3>f2. Hence, the combined model per-
form better than the single forecasting models (Fig. 
7c). Details are referred to Feng et al. (2014). 

 
 

Degradation Data
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Figure 7. Life prediction based on combined algorithms. 

 



The experiment-based PHM framework can pro-
vide usage-oriented prediction model at the in-field 
development phase for field RUL prediction, which 
is superior to the traditional methods that mainly re-
ly on field monitoring data. 

5 CONCLUSIONS 

Nowadays, the PHM technique has been applied in 
rotating machinery, batteries and other complicated 
equipment, providing on-line health evaluation re-
sults of the product to users and saving maintenance 
cost (Sikorska et al. 2011, Zhang et al. 2011, Lee et 
al. 2014). However, traditional PHM technique 
mainly focus on the monitoring data from field use 
to undertake RUL prediction modelling, which has 
shortcomings on both data and model for high-
reliability and long-life products. Therefore, this pa-
per proposed the experiment-based framework to in-
tegrate all the information from in-field phase to do 
life prediction modelling from the perspective of to-
tal life cycle. The prediction model sets keep updat-
ing with the information accumulating to ensure the 
effeteness of prediction activity. At the viewpoint of 
reliability engineering, this is also a new develop-
ment of reliability growth program. The usage-
oriented life prediction model set is given and veri-
fied at the in-field development phase, which defi-
nitely ensure the accuracy of prediction results. 

The values of the experiment-based PHM tech-
nique are on:  
 Integrating the idea of prognosis and acceleration 

to enrich the connotation of reliability engineer-
ing. 

 Supporting the total life cycle management of 
product with the further development of reliabil-
ity platform, which can be widely used in aero-
space, automotive, energy and other fields. 

 Shortening the product development time by im-
proving product reliability and life expectancy, 
realizing intelligent maintenance to ensure its 
safety and economy, achieving green product 
ecology. 
The development of high-reliability and long-life 

products promotes new requirements for current re-
liability engineering systems. The proposed experi-
ment-based framework integrates diagnostics, prog-
nosis and health management with reliability testing 
methods, providing a feasible idea to achieve total 
life cycle management. 

ACKNOWLEDGEMENTS 

The authors would like to thank Dr. Kun Zhang, Dr. 
Jin-Yong Yao and Dr. Xiao-Hong Wang for their 
contribution to this paper. The authors would also 
like to express their gratitude to the anonymous re-

viewers for their valuable suggestions. This work 
was partially supported by the National Natural Sci-
ence Foundation of China under Grant NSFC 
61104182. 

REFERENCES 

Caesarendra, W., Niu, G. & Yang, B. S. 2010. Machine 
condition prognosis based on sequential Monte Carlo 
method. Expert Systems with Applications 37(3): 2412-
2420. 

Chen, N. & Tsui, K. L. 2013. Condition monitoring and 
remaining useful life prediction using degradation signals: 
revisited. IIE Transactions 45(9): 939-952. 

Collins, D. H., Freels, J. K., Huzurbazar, A. V., Warr, R. L. & 
Weaver, B. P. 2013. Accelerated Test Methods for 
Reliability Prediction. Journal of Quality Technology 
45(3): 244-259. 

Escobar, L. A. & Meeker, W. Q. 2006. A review of accelerated 
test models. Statistical Science 21(4): 552-577. 

Feng, L., Li, X.-Y., Jiang, T.-M. & Dang, X.-J. 2014. A 
Combined Prediction Method for the Life of Product Based 
on PSO with Immunity Algorithms. Reliability & 
Maintainability Symposium (RAMS) 1-6. 

Heng, A., Zhang, S., Tan, A. C. C. & Mathew, J. 2009. 
Rotating machinery prognostics: State of the art, challenges 
and opportunities. Mechanical Systems and Signal 
Processing 23(3): 724-739. 

Jardine, A. K. S., Lin, D. M. & Banjevic, D. 2006. A review on 
machinery diagnostics and prognostics implementing 
condition-based maintenance. Mechanical Systems and 
Signal Processing 20(7): 1483-1510. 

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L. & Siegel, D. 
2014. Prognostics and health management design for rotary 
machinery systems—Reviews, methodology and 
applications. Mechanical Systems and Signal Processing 
42(1): 314-334. 

Li, X.-Y., Liu, L., He, B. & Jiang, T.-M. 2013. Accelerated 
Degradation Test and Particle Filter Based Remaining 
Useful Life Prediction. Chemical Engineering Transactions 
33: 343-348. 

Liao, H. & Tian, Z. 2013. A framework for predicting the 
remaining useful life of a single unit under time-varying 
operating conditions. IIE Transactions 45(9): 964-980. 

Liao, L. & Kottig, F. 2014. Review of Hybrid Prognostics 
Approaches for Remaining Useful Life Prediction of 
Engineered Systems, and an Application to Battery Life 
Prediction. IEEE Transactions on Reliability 63(1): 191-
207. 

Liu, J., Wang, W., Ma, F., Yang, Y. B. & Yang, C. S. 2012. A 
data-model-fusion prognostic framework for dynamic 
system state forecasting. Engineering Applications of 
Artificial Intelligence 25(4): 814-823. 

Liu, X. & Tang, L. C. 2010. A Bayesian optimal design for 
accelerated degradation tests. Quality and Reliability 
Engineering International 26(8): 863-875. 

Meeker, W. Q., Escobar, L. A. & Lu, C. J. 1998. Accelerated 
degradation tests: modeling and analysis. Technometrics 
40(2): 89-99. 

Meng, G. & You, M.-Y. 2011. Review on condition-based 
equipment residual life prediction and preventive 
maintenance scheduling (In chinese). Journal of Vibration 
and Shock 30(8): 1-11. 

Niu, G., Yang, B. S. & Pecht, M. 2010. Development of an 
optimized condition-based maintenance system by data 
fusion and reliability-centered maintenance. Reliability 
Engineering & System Safety 95(7): 786-796. 



Saha, B., Goebel, K. & Christophersen, J. 2009a. Comparison 
of prognostic algorithms for estimating remaining useful 
life of batteries. Transactions of the Institute of 
Measurement and Control 31(3-4): 293-308. 

Saha, B., Goebel, K., Poll, S. & Christophersen, J. 2009b. 
Prognostics Methods for Battery Health Monitoring Using 
a Bayesian Framework. IEEE Transactions on 
Instrumentation and Measurement 58(2): 291-296. 

Si, X.-S., Wang, W., Hu, C.-H. & Zhou, D.-H. 2011. 
Remaining useful life estimation – A review on the 
statistical data driven approaches. European Journal of 
Operational Research 213(1): 1-14. 

Sikorska, J. Z., Hodkiewicz, M. & Ma, L. 2011. Prognostic 
modelling options for remaining useful life estimation by 
industry. Mechanical Systems and Signal Processing 25(5): 
1803-1836. 

Tseng, S. T., Balakrishnan, N. & Tsai, C. C. 2009. Optimal 
Step-Stress Accelerated Degradation Test Plan for Gamma 
Degradation Processes. IEEE Transactions on Reliability 
58(4): 611-618. 

Vaidya, P. & Rausand, M. 2011. Remaining useful life, 
technical health, and life extension. Proceedings of the 
Institution of Mechanical Engineers, Part O: Journal of 
Risk and Reliability 225(2): 219-231. 

Wang, T. 2011. Trajectory similarity based prediction for 
remaining useful life estimation. PhD, University of 
Cincinnati. 

Wang, X.-H., Li, Q.-X. & Feng, Y.-L. 2014. Research of 
Double Nozzle Flapper Valve Accelerated Degradation 
Test. Applied Mechanics and Materials 532: 18-21. 

You, M.-Y. & Meng, G. 2013. A predictive maintenance 
scheduling framework utilizing residual life prediction 
information. Proceedings of the Institution of Mechanical 
Engineers, Part E: Journal of Process Mechanical 
Engineering 227(3): 185-197. 

Zhang, K., Yao, J. & Jiang, T. 2014. Degradation assessment 
and life prediction of electro-hydraulic servo valve under 
erosion wear. Engineering Failure Analysis 36: 284-300. 

Zhang, X., Chen, X., Li, B. & He, Z. 2011. Review of Life 
Prediction for Mechanical Major Equipments (In chinese). 
Journal of Mechanical Engineering 47(11): 100-116. 

Zhao, W., Tao, T., Ding, Z. & Zio, E. 2013. A dynamic 
particle filter-support vector regression method for 
reliability prediction. Reliability Engineering & System 
Safety 119: 109-116. 

Zhou, D.-H., Wei, M.-H. & Si, X.-S. 2013. A Survey on 
Anomaly Detection, Life Prediction and Maintenance 
Decision for Industrial Processes (In chinese). Acta 
Automatica Sinica 39(6): 711-722. 

Zio, E. & Di Maio, F. 2010. A data-driven fuzzy approach for 
predicting the remaining useful life in dynamic failure 
scenarios of a nuclear system. Reliability Engineering & 
System Safety 95(1): 49-57. 

Zio, E. & Peloni, G. 2011. Particle filtering prognostic 
estimation of the remaining useful life of nonlinear 
components. Reliability Engineering & System Safety 
96(3): 403-409.

 
 


	Liefp-extended abstract
	Liefp-full length paper


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 350
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 350
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 350
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 350
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


