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Utilizing Accelerated Degradation and Field
Data for Life Prediction of Highly Reliable
Products
Le Liu, Xiao-Yang Li,*† Tong-Min Jiang and Fu-Qiang Sun
For newly developed, highly reliable, and long-lifespan products, it is quite difficult to implement effective remaining useful
life (RUL) prediction in the early usage under limited time cost. However, accelerated degradation testing (ADT) is generally
used for lifetime evaluation for such products with harsher test conditions and shorter test time in the late research and
development phase. Thus, in this paper, we propose a life prediction framework to integrate the information from ADT to
conduct field RUL prediction for highly reliable products. Because ADT belongs to reliability testing used for inferring the
population information from the selected test samples, we at first present the modified Wiener process (MWP) model.
Different from traditional methods that embody both the random variability and unit-to-unit variability into the diffusion
coefficient, the proposed method describes them separately in ADT analysis. Then, the MWP model from ADT is used as a
prior for field RUL prediction of the target product during which the strong tracking filtering algorithm is introduced for
updating the hidden state and computing the RUL prediction results when the new monitoring data are available. Because
of the complexity of the MWP model, the Markov chain Monte Carlo method is provided to estimate the unknown
parameters. Finally, the simulation study and the light-emitting diode application verify the effectiveness of the proposed
framework that can achieve reasonable life prediction results for highly reliable products for both linear and nonlinear
scenarios. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

R
emaining useful life (RUL) prediction is an essential part of prognostics and health management, which is also a hot research
area and widely used in industrial and mechanical applications.1,2 RUL can provide a basis for maintenance decision-making
to reduce related cost and ensure the safety operation of the equipment.3 Therefore, it is vital to guarantee the prediction

accuracy, which has significant influence on the corresponding decisions. In general, the internal physical degradation process can
be traced by the external change of product quality characteristics, for example, the on-state collector-emitter voltage of
insulated-gate bipolar transistor4 and the capacity of lithium-ion battery.5 Based on which, the time to failure can be acquired by
modeling the characteristic degradation index with failure threshold. For newly developed products under field usage environment,
it is rather difficult to trace the degradation index in a limited time because products are born to have high reliability and long
lifespan. Thus, an accurate and reasonable RUL prediction result is hard to acquire for product in usage unless enormous time cost
has been put on the degradation monitoring.

In the late research and development phase, quantitative accelerated degradation testing (ADT) is widely used to verify whether
the reliability and life indexes of the products satisfy the requirements before releasing them to the market.6,7 Through more severe
stress levels, performance degradation process can be accelerated and sufficient degradation data can be obtained in a limited time.
Thus, ADT can effectively overcome the life evaluation problem of high reliability and long-life products.8 Wang et al.9 used ADT for
life evaluation of light-emitting diode (LED)-based light bars and concluded that the failure time at normal use condition is 11 571 h.
Park et al.10 used organic LED as a motivation example and provided three failure time distribution inference methods from ADT data.
Bae et al.11 analyzed the ADT data of membrane electrode assembly and concluded the median failure time is 669.78 h. In addition,
some researchers are concerned with the situation that both failure and degradation data exist in accelerated testing.12,13 For the
situation that both ADT data and field failure or degradation data exist, Wang et al.14 introduced two calibration factors to modify
the difference between accelerated and field data, utilizing Bayesian methods to conduct life evaluation.
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The population-based information from ADT can provide knowledge for understanding the degradation pattern of the products,
which can then be used for field RUL prediction for new highly reliable products. Thus, the main interest of this paper is to propose
the integration framework for the field RUL prediction of the target individual by utilizing both accelerated degradation and field
data. Considering that the data from ADT are used for training the degradation model as a prior and field data can then timely
update the model, less data will be needed for field RUL prediction, and reasonably accurate prediction results can be achieved
in a limited time.

For most products, the analytical functions of the internal failure mechanism are hard to be obtained using physical or chemical
analysis. Therefore, data-driven methods are widely used in ADT analysis12,15,16 and life prediction area,17,18 especially the stochastic
processes based on cumulated damage theory, for example, Wiener process, Gamma process, and inverse Gaussian process.13,19,20

With its mathematical tractability, the Wiener process is widely used as the underlying degradation model for both ADT and field data
analysis. With its time-scale transformation, it can be used for both linear and nonlinear degradation analysis.21,22

In standard ADT analysis with a Wiener process model, it is assumed that the drift coefficient (also called degradation rate) is stress-
related, and diffusion coefficient reflects both the unit-to-unit variability and random variability.14,15,20,23 However, unit-to-unit
variability should be separated from random variability because several samples are tested during ADT. Peng et al.24 demonstrated
this problem for degradation modeling analysis and assumed that the drift coefficient follows a normal distribution. Carey et al.25

considered the influence of temperature stress on life evaluation of integrated logic family and added an error term in the
acceleration model to present the unit-to-unit variability. In Section 3, the differences of reliability evaluation results due to the
consideration of unit-to-unit variability are demonstrated to be significant.

For field RUL prediction, it is generally assumed that the field stress level is fixed and that the RUL prediction results can be given
by substituting the field stress level to the estimated ADT model, which may be invalid in reality. In order to relax that assumption,
some papers consider the field stress as stochastic distributions26 or use calibration factors to integrate ADT and field information.14,27

However, those methods may be less effective for products experienced in such field conditions that vary from customer to customer
with their interests. From the ADT analysis, it is known that the uncertainty of field stress has influences on drift coefficient. Thus, the
drift coefficient can be treated as hidden state and will be updated with new available degradation data. In this paper, the strong
tracking filtering (STF) algorithm is selected for accomplishing this purpose and computing the real-time RULs because it has the
strengths of real-time recursively prediction, insensitivity to shock change of the degradation process and so forth.22,28,29 Details
are referred to Zhou et al.29

The remaining sections of this paper are organized as follows. Section 2 presents the modeling methods for ADT and field data,
including ADT modeling, field prediction model with RUL distributions, and the Markov chain Monte Carlo (MCMC) methods for
unknown parameters. The illustration of the proposed method for both linear and nonlinear scenarios is shown in Section 3.
Section 4 presents the LED case to apply to the proposed method, and discussions are given to the comparison with other two
models. Section 5 concludes this paper.
2. Methodology

In this section, the integrated prediction framework based on ADT and field data is proposed. The modeling processes and the RUL
distributions for both linear and nonlinear scenarios are given in detail.

In this framework (Figure 1), ADT data are used as prior information to identify the parameters of the acceleration and degradation
model under accelerated conditions, in which both the unit-to unit variability and random variability are taken into consideration
separately. Then, the extrapolated degradation model under normal condition is used as the initial field prediction model, and it
Figure 1. The life prediction framework based on accelerated degradation testing data and field data
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can be updated when new monitoring data are available. Meanwhile, the uncertainty of field stress is embedded into the degradation
state. Finally, the modified model is used for field RUL prediction. The proposed method can make reasonable field RUL results
through using historical ADT information for high reliability and long-lifespan products. It should be mentioned that the prior
information is acquired from the population of product, while real prediction in field case will be specified on the target individual
with real-time monitoring data.
2.1. Acceleration and degradation models

With the great physical and statistical properties, stochastic processes are widely used for modeling the degradation process, X(t), of
product quality characteristic varied with time. In this paper, we select the Wiener process model with time-scale transformation.

X tð Þ ¼ x0 þ λΛ tð Þ þ σB Λ tð Þð Þ (1)

where x0 is the initial degradation value. λ> 0 is the drift coefficient. Λ(t) is the non-decreasing time transformation, and (1) is called a
linear model when Λ(t) = t and a nonlinear model when Λ(t) = tγ. σ is the diffusion coefficient. B(.) is the standard Brownian motion.

When using model (1) for ADT analysis, some assumptions are given14,23,30:

Assumptions:
1. Stresses are well handled to remain stable during the accelerated test.
2. Diffusion coefficient reflects both unit-to-unit variability and the variability due to operating and environmental conditions and

assumes to be constant.
3. Drift coefficient governs the degradation path, which has a relationship with accelerated stresses, that is, acceleration model.
In the application of acceleration models, the log-linear relationship is a generalized form, covering Arrhenius model with

temperature stress T, Eyring model with electrical stress I, and so on. For our model, that is

log λið Þ ¼ Aþ
X
i

Biφ sið Þ (2)

where λi is the drift coefficient under accelerated stress type i, A and Bi are constant parameters, and ϕ(si) denotes the function of
accelerated stress si.
2.1.1. Traditional lifetime and reliability evaluation. In standard ADT analysis, stochastic process, Eq. (1), is selected to describe the
degradation process under different stress levels for each test sample. Then, the acceleration model is chosen to extrapolate the drift
coefficient into normal stress s0 by Eq. (2), that is, λ0. Therefore, the reliability of product under normal stress can be given based on
the stochastic property of the degradation process. Specifically, the first passage time (FPT) of Eq. (1) to failure threshold, D and
D’=D-x0, follows an inverse Gaussian distribution.31 The probability density function (PDF) of transformed FPT and the reliability
function for product are

f t D′; σ; λ0
��� �

¼ D′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2 Λ tð Þ½ �3

q exp �
D′ � λ0Λ tð Þ
h i2

2σ2Λ tð Þ

8><>:
9>=>;dΛ tð Þ

dt
(3)

R t D′; σ; λ0
��� �

¼ Φ
D′ � λ0Λ tð Þ
σ
ffiffiffiffiffiffiffiffiffi
Λ tð Þp !

� exp
2λ0D

′

σ2

 !
Φ �D′ þ λ0Λ tð Þ

σ
ffiffiffiffiffiffiffiffiffi
Λ tð Þp !

(4)

The lifetime under the reliability level of interest can also be given by

tR ¼ Λ�1 R�1 D′; σ; λ0
� �

R¼Rd
j

h i
(5)

where Rd is the defined reliability level, tR is the corresponding lifetime, and Λ�1 is the inverse function for time transformation.
2
2
8
3

2.1.2. New insight for the consideration of unit-to-unit variability. Because several samples are put into ADT and each of them has their
own degradation pattern due to the manufacturing and/or environmental condition, the unit-to-unit variability should be separated
from the diffusion coefficient in Eq. (1). Therefore, we modify assumptions (2) and (3) as follows.

Assumptions:
4. Diffusion coefficient reflects the random property of the tested samples and assumes to be constant.
5. Drift coefficient is a random variable representing the unit-to-unit variability due to manufacturing and/or environmental condition.
Then, a random noise term is added into the acceleration model, that is, Eq. (2), to present the unit-to-unit variability
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297
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log λið Þ ¼ Aþ
X
i

Biφ sið Þ þ η (6)

where η∼N 0; σ21
� �

. Thus, the drift coefficient follows lognormal distribution rather than simple normal distribution, for example,
λ0∼LogN Aþ ∑iBiφ si0ð Þ; σ21

� �
.

The new marginal PDF of FPT and the reliability function relied on λ0 are

f new t D′; σ
��� �

¼ ∫f t D′; σ; λ0
��� �

f λ0ð Þdλ0 (7)

R new t D′; σ
��� �

¼ 1� ∫
Λ tð Þ
0

f new u D′; σ
��� �

du (8)

Meanwhile, the reliable lifetime can also be given by

t newR ¼ Λ�1 Rnew�1
D′; σ
� �

R¼Rd
j

h i
(9)

Hence, the integration of Eqs (1) and (6) is the modified Wiener process (MWP) for ADT analysis, which separates the random
variability and unit-to-unit variability into degradation and acceleration models. The identified MWP with ADT data can then be used
as a prior prediction model for field RUL prediction.

2.2. On-line life prediction for field use

Assumptions:
6. No new failure mechanism is introduced when products are used in field operating conditions.
7. Products follow the same degradation pattern; thus, the random variability in normal condition is the same with that in

accelerated test.
In this paper, we consider the situation that products experienced a harsh or gentle but not destructive environment in field use,

which satisfies assumption (6). In terms of assumption (7), the consistency of product property means that they follow the same
pattern in gradual degradation. Therefore, the degradation process in field use is in accordance with Eq. (1).

Without loss of generality, the uncertainty of field stress is presented on the time-varying degradation state λ, which is stress-
related (Eqs (2) and (6)). Thus, the state transfer model at time k can be simplified as follows

λk ¼ λk�1 þ δk�1 (10)

where δk-1 denotes the influence of field stress level on degradation state at time k� 1, which is assumed to be s-independent and
s-normal distributions with mean 0 and standard deviation σ2. The initial value of degradation state is given from ADT by taking field
stress level s0 into Eq. (6).

The field degradation history till time k is described by X0:k, Xo:k= [X(t0), X(t1), …, X(tk)]’. According to Eq. (1) and assumption (7), the
field measurement model is given according to the MWP.

x tkð Þ ¼ x tk�1ð Þ þ λk�1Δtk þ σεk (11)

where Δtk=Λ(tk)- Λ(tk-1), where εk∼N(0,Δtk).
Hence, Eqs (10) and (11) constitute the basic prediction model for product in field use, and the drift coefficient, λ, can be treated as

hidden variable and estimated from the field monitor history. When new degradation data are available, the state and measurement
equations can be updated for RUL prediction. With the failure threshold D, RUL at time k, Lk, can be defined as the FPT, which satisfies

Lk ¼ inf lk > 0 x tk þ lkð Þ ≥ D; x tkð Þ < Djf g (12)

In practical field use, the degradation process may experience a shock change rather than gradual deterioration. Hence, the STF
algorithm is introduced to update the hidden state. Details about the algorithm are given in the following:

Algorithm 1: hidden state estimation
Step 1: Setting initial value

bλ0 ¼ E λ0ð Þ ¼ e
Aþ∑

i

Biφ si0ð Þþσ21=2

� 	
;P0j0 ¼ Var λ0ð Þ ¼ eσ

2
1 � 1

� �
e

2 Aþ
X
i

Biφ si0ð Þ
 !

þσ21

 !
; α; ρ

Step 2: Calculating fading factor r(tk) from the orthogonality principle
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297
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B tkð Þ ¼ V0 tkð Þ � σ22Δtk
2 � ασ2Δtk

V0 tkð Þ ¼
υ2 tkð Þ k ¼ 1

ρV0 tk�1ð Þ þ υ2 tkð Þ
1þ ρ

k > 1

8><>:
υ tkð Þ ¼ x tkð Þ � x tk�1ð Þ � bλk�1Δtk
C tkð Þ ¼ Pk�1jk�1Δtk

2

r tkð Þ ¼ max 1;B tkð Þ=C tkð Þf g

Step 3: Estimating the hidden state by

Pkjk�1 ¼ r tkð ÞPk�1jk�1 þ σ22
Qk ¼ Δtk2Pkjk�1 þ σ2Δtkbλk ¼ bλk�1 þ Pkjk�1ΔtkQ

�1
k υ tkð Þ

(13)

Step 4: Updating the variance of the hidden state by

Pkjk ¼ Pkjk�1 � Pkjk�1Δtk
2Q�1

k Pkjk�1 (14)

In Algorithm 1, the softening factor α and the forgetting factor ρ can be selected heuristically where we set ρ= 0.95.29 Based on
Eqs (13) and (14), the PDF of hidden variable λk replied on degradation history X0:k is

f λk X0:kjð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πPk kj

p exp �
λk � bλk� �2
2Pk kj

0B@
1CA (15)

where bλk and Pk|k denote the mean and variance of variable λ at time k.
2
2
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2.2.1. Remaining useful life distribution for linear scenario. We first consider linear scenario as the simple case when Λ(t) = t. The FPT of
(11) follows an inverse Gaussian distribution as Eq. (3). At time k, the RUL of product relied on the degradation history X0:k and state
variable λk is

f lk X0:k; λkjð Þ ¼ D� x tkð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π lkð Þ3σ2

q � exp � D� x tkð Þ � λklkð Þ2
2σ2lk

 !
(16)

where state variable λk is not observable and should be estimated recursively based on historical degradation data till current time k.
Considered the uncertainty of field stress, the PDF of RUL is computed by Eqs (15) and (16) using the total probability rule.28

f lk X0:kjð Þ ¼ ∫f lk X0:k; λkjð Þf λk X0:kjð Þdλk (17)

That is

f lk X0:kjð Þ ¼ D� x tkð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π lkð Þ3 σ2 þ Pkjklk

� �q � exp �
D� x tkð Þ � bλklk� �2
2 σ2 þ Pkjklk
� �

lk

0B@
1CA : (18)

2.2.2. Remaining useful life distribution for nonlinear scenario. With the complexity of nonlinear property, the analytical form of the
FPT for Eq. (11) is hard to be given. However, under some mild assumptions,22,32 the result is

f lk X0:kjð Þ ¼ γ tk þ lkð Þγ-1 D� x tkð Þð Þ
ΔΛ tk þ lkð Þ ffiffiffiffiffiffiffiffiffiffiffi

2πUk

p � exp �
D� x tkð Þ � bλkΔΛ tk þ lkð Þ
� �2

2Uk

0B@
1CA: (19)

where ΔΛ tk þ lkð Þ ¼ tk þ lkð Þγ � t
γ
k , Uk ¼ ΔΛ tk þ lkð Þ2Pk kj þ σ2ΔΛ tk þ lkð Þ.

Obviously, Eq. (18) is the special case of Eq. (19) when γ= 1.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297
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2.3. Parameter estimation

This section addresses the estimates of unknown parameters, which is Θ= [A, Bi, σ, σ1, σ2, γ]. From aforementioned knowledge, [A, Bi, σ,
σ1, γ] are related to ADT data and describe the population information of products, while σ2 for the target product in field use. Thus,
the parameter set Θ can be divided into two parts: Θ1 = [A, Bi, σ, σ1, γ] and Θ2 = [σ2], and be estimated separately.

2.3.1. Estimation of Θ1. In terms of the ADT data, (1) and (2) can easily lead to

ΔxijkeN λijΔtijk; σ2Δtijk
� �

(20)

log λij
� �eN Aþ

X
i

Biφ sið Þ; σ21
 !

(21)

where xijk is the performance degradation value at accelerated stress level i of sample j at monitor point k, i=1,2,…,K; j= 1,2,…, ni;
k=1,2,…, mj, and Δxijk= xijk� xij(k� 1), Δtijk=Λ(tijk)�Λ(tij(k� 1)). Thus, the joint likelihood function parameter Θ1 based on ADT data is

L X Θ1jð Þ ¼ p Δxijk λij; σ; γ
��� �

p λij A;Bi; σ1j� �
¼ ∏

i

∏
j

∏
k

f Δxijk λij; σ; γ
��� �

f λij A;Bi; σ1j� �
 �
(22)

The posterior distribution is

π Θ1 Xjð Þ ¼ L X Θ1jð Þπ0 Θ1ð Þ (23)

where π0(Θ1) = π0(A, Bi, σ, σ1, γ) is the joint prior distribution for unknown parameters.
As the complex expressions for unknown parameters Θ1 from (20) to (23), it is quite difficult to acquire the analytical results.

However, the form can be treated as a hierarchical model from the perspective of Bayesian analysis. Thus, the MCMC and advanced
sampling method can be used to obtain the posterior PDFs of the parameters. The mean values of the computational results are
treated as the parameters’ estimation. Then, reliability evaluation for ADT and the prior information for field life prediction can be
obtained by (8), (10), and (11).

In this paper, Gibbs sampling method is selected with WinBUGS to evaluate the parameters of interest.33 We assume that the priors
of the unknown parameters are non-informative and independent. Specifically,

AeN μA; ε
2
A

� �
; BieN μBi

; ε2Bi

� �
σeIGa a;bð Þ; σ1eIGa a1;b1ð Þ

and

γ eN μγ; ε
2
γ

� �

2.3.2. Estimation of Θ2. The parameter Θ2, that is, σ2, represents the influence of field environmental stress on the degradation state
of the target product. Therefore, it can be estimated through the degradation history, that is, X0:k. According to Eqs (10) and (11), we
have

λkeN λk�1; σ22
� �

(24)

Δx tkð ÞeN λk�1Δtk; σ2Δtk
� �

(25)

It is quite similar to the form of that in the estimation of Θ1, which formulates a hierarchical model and can be timely updated
when new measurement are available. Therefore, we also use MCMC method to estimate σ2. A similar estimation procedure can
be found in Wang et al.22
3. Simulation results

In this section, we use simulation tests to illustrate the proposed method for both linear and nonlinear scenarios, which is to tell the
using of ADT data for field RUL prediction. By analyzing the prediction results, some comments are concluded for the proposed
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297
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method. For the purpose of the comparison of traditional and new ADT evaluation results, as given in Eqs (4) and (8), we call the
situation that considers the influence of unit-to-unit variability as case 1, and the other one is case 2.

3.1. Simulation of linear scenario

The Wiener process model in Eq. (1) is used to generate the linear degradation data with Λ(t) = t, and the parameter values are given
in Table I. The simulation data for both step stress ADT and field use with single stress are shown in Figure 2(a) and (b).

3.1.1. Parameter estimation for accelerated degradation testing analysis. At first, the unknown parameters in ADT, that is, Θ1 = [A, B, σ,
σ1], are estimated by following the procedure shown in Section 2.3.1. The Gelman–Rubin index is chosen to check the convergence of
Markov chains, which is the degree of approximating 1.34 We set the total iteration to 200 000 times, and the first 50 000 results is
discarded as the burn-in period, after that the two chains become stable. The estimated posterior PDFs for ADT parameters are given
in Figure 3(a), while the Gelman–Rubin indexes are given in Figure 3(b). It is obvious that all the sampling chains for parameters are
converged. Table II shows the estimation results with 95% confidence intervals and the corresponding relative errors calculated by

Error ¼ Parest � Parrealð Þ=Parrealj j � 100 (26)

As shown in Table II, the proposed parameter estimation method in this paper is reasonably accurate. Thus, it can provide reliable
prior information for field RUL prediction with the estimated degradation model. Table III shows the parameter estimation results for
Table I. Simulation parameters for step stress accelerated degradation testing

Conditions Contents Values

Accelerated states Stress (T/°C) 60, 80, 100
Monitor points at each stress level 50, 30, 20
Monitor interval (hours) 5
Number of samples 6
Acceleration model φ(s) = 1/(273.15 + T)

Normal state Stress (T/°C) 25
Monitor times 17
Monitor interval (hours) 1000
Number of samples 2

Model parameters y0 D A B σ σ1 σ2
N(0,0.25) 25 12 �5500 0.01 0.5 0.0001

Figure 2. (a) The simulated six step stress accelerated degradation testing samples and (b) two field samples for linear scenario

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297
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Figure 3. (a) Posterior probability density functions of step stress accelerated degradation testing parameters and (b) convergence check

Table II. Case 1: the parameter estimation results and related errors

Parameters mean (Parest) std 2.5% 97.5% Error (%)

A 12.3617 0.5340 11.32 13.41 3.01
B �5621.9 186.8 �5990.0 �5256.0 2.22
σ 0.0097 0.0011 0.007768 0.01223 3.32
σ1 20.4808 0.0243 0.4319 0.5274 3.84

std, stands for standard deviation.

L. LIU ET AL.
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case 2. It is interesting to conclude that the parameters in acceleration models (2) and (6) are relatively close to true values in two
cases because their related errors are lower than 3%. However, as we can see from σ, the value in case 2 is significantly far from
the true one. The reason may be that it contains not only the effect of random property of degradation process but also the unit-
to-unit variability, which means that such differences are not distinguishable as that in case 1.

In terms of the evaluation results, the reliability curves for the two cases are given in Figure 4, which offer an intuitive
understanding of the difference between two cases. For the same set of ADT data, the reliability and lifetime evaluation results
vary from one to another. Specifically, case 1 embodies the variability of degradation process to both drift and diffusion
coefficients, while case 2 only to diffusion coefficient. Thus, the reliability curve for case 1 is more stable than case 2 and close
to actual values. In practical applications, the confidence interval is also of interest to present the uncertainty of parameter, which
will be computed by using bootstrap method. The 95% confidence interval for case 1 is given in Figure 4, which can capture the
real reliability curve.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297



Table III. Case 2: the parameter estimation results and related errors

Parameters mean (Parest) std 2.5% 97.5% Error (%)

A 12.16 0.6763 11.03 13.47 1.34
B �5549.4 239.9 �6016.0 �5150.0 0.90
σ 0.0211 0.0013 0.01866 0.0237 110.86

Figure 4. The reliability curves in two cases and the compared true curve for linear scenario

L. LIU ET AL.
If the producers care about the lifetime when reliability level equals to 0.9, the values are 8900(h) ([7600, 10 300](h)) and 13 754(h)
according to Eqs (5) and (9), while the true value is 8400(h). Therefore, special attention may be needed for the unit-to-unit variability
in ADT analysis and reliability evaluation.
3.1.2. Life prediction for field use. In actual field use, the RUL for the target product is that of interest that influences the maintenance
policy and decision-making. For illustration purpose, two degradation paths are simulated with 17 monitor degradation values, and
both of paths exceed the failure threshold as shown in Figure 2(b). Thus, it can be treated as the total life cycle degradation data to
verify the correctness of the prediction results.

The parameter estimation results from ADT in Section 3.1.1 are taken as prior information of models (10) and (11). The initial values

can be set accordingly, that is,bλ0 =0.001697, P0|0 = 7.4906e-07, while the coefficient parameter is σ =0.0097. At each monitor point, the
hidden variable can be updated with time when the new degradation value is available by Algorithm 1 and Eq. (18). Thus, the
corresponding PDFs of RULs can be computed. Figure 5 shows the estimated PDFs of the RULs before failure with the actual values.
Intuitively, the estimated results become more accurate with the accumulated degradation history.

We also calculate the relative error of the predicted degradation paths with the true ones (Figure 6), which presents that the
predicted paths are quite close to true paths except for the first monitor point, which relies only on the initial value. Thus, the
information from ADT analysis can be used for field life prediction as prior information and linear degradation path modeling.
Figure 5. The estimated probability density functions of remaining useful life for sample 1 (a) and sample 2 (b) from the second monitor point to that before failure
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Figure 6. Relative error for the predicted degradation paths with the true paths for linear scenario

Table IV. Simulation parameters for constant stress accelerated degradation testing

Conditions Contents Values

Accelerated states Stress (T/°C) 50, 65, 75
Monitor points at each stress level 100
Monitor interval (hours) 5
Number of samples 12 (4 samples in each stress level)
Acceleration model φ(s) = 1/(273.15 + T)

Nonlinear γ 1.5
Normal state Stress (T/°C) 25

The number of monitoring 13
Monitor interval (hours) 300
Number of samples 2

Model parameters y0 D A B σ σ1 σ2
N(0,0.25) 25 11 �6000 0.01 0.5 0.0001

Figure 7. (a) The simulated 12 constant stress accelerated degradation testing samples and (b) two field samples for nonlinear scenario
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3.2. Simulation of nonlinear scenario

For the simulation procedure of nonlinear degradation, it is quite similar to linear scenario. The time-scale transformation is chosen to
be Λ(t) = tγ21, 22, 32, and the parameter values are given in Table IV. The simulation data for both constant stress ADT (CSADT) and field
use with single stress are shown in Figure 7(a) and (b).

3.2.1. Parameter estimation for accelerated degradation testing analysis. For the two cases, the parameters in ADT model, that is,
Θ1 = [A, B, σ, σ1, γ], are estimated by MCMC method following the procedure in Section 2.3.1. Two hundred thousand iterations are
simulated for the purpose of convergence check of the sampling Markov chains, while the first 50 000 is abandoned as burn-in period
(Figure 8). Tables V and VI present the estimation results with 95% confidence intervals for two cases. The nonlinear parameter, that is, γ,
in case 1 is more accurate than that in case 2. Compared with the linear scenario, the diffusion in case 2 is also larger than that in case 1
but not that much significant, while the parameter σ1 has a lower accuracy maybe because of small sample.

For the reliability and lifetime evaluation, Figure 9 shows the results for two cases and the true value. Similar with the linear
scenario, case 1 is much close to true one and stable than case 2, which means that the consideration of unit-to-unit variability is
Figure 8. (a) Posterior probability density functions of constant stress accelerated degradation testing parameters and (b) convergence check
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Table V. Case 1: the parameter estimation results and related errors

Parameters mean (Parest) std 2.5% 97.5% Error (%)

A 11.7207 1.164 9.506 14.07 6.55
B �6264.6 396.4 �7062.0 �5511.0 4.41
γ 1.5089 0.02694 1.455 1.562 0.60
σ 0.0098 8.347E-4 0.008264 0.01159 1.72
σ1 0.4320 0.03881 0.3539 0.5067 13.61

Table VI. Case 2: the parameter estimation results and related errors

Parameters mean (Parest) std 2.5% 97.5% Error (%)

A 10.5522 1.15 8.795 13.04 4.07
B �5904.4 388.2 �6713.0 �5305.0 1.59
γ 1.5413 0.02971 1.482 1.6 2.76
σ 0.0104 9.77E-4 0.008629 0.01246 3.94

Figure 9. The reliability curves in two cases and the compared true curve for nonlinear scenario
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needed for ADT analysis. The 95% confidence interval for case 1 is also given in Figure 9, which is slightly deviated from the true curve
but performs better than case 2.

If the reliability of 0.9 is that of interest, the values are 2670(h) ([2470, 2870](h)) and 2701(h), respectively, comparing with the true
value 2400(h).
3.2.2. Life prediction for field use. Then, we calculate the RULs for the two target products in Figure 7(b), which have 13 monitor
points, and the two paths exceed the failure threshold. Thus, the total life cycle degradation data can verify the correctness of the
prediction results.

The parameter estimation results from ADT in Section 3.2.1 are taken as prior information of models (10) and (11), which arebλ0 =1.0128e-04, P0|0 = 2.1039e-09, while the coefficient parameter σ = 0.0098 and nonlinear parameter γ=1.5089. At each monitor
point, the corresponding PDFs of RULs can be computed by Algorithm 1 and Eq. (19). Figure 10 shows the estimated results with
the actual ones before failure. Meanwhile, with the accumulating of degradation data, the estimated RULs are more accurate especially
when it is quite close to failure.

Figure 11 presents the relative error of the predicted paths for two field products, which experience a gradual decrease when the
influence of initial value is negligible. Thus, the information from ADT analysis can also be used for field life prediction as prior
knowledge and nonlinear degradation path modeling.
4. Discussion

In this section, a real engineering application is used for applying the proposed method, which has been demonstrated to be effective
for ADT modeling and field RUL prediction of both linear and nonlinear scenarios in Section 3, and discussions are given to the
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297



Figure 10. The estimated probability density functions of remaining useful lives for sample 1 (a) and sample 2 (b) before failure

Figure 11. Relative error for the predicted degradation paths with the true paths for nonlinear scenario

L. LIU ET AL.
comparison of the reliability evaluation results from the proposed method with the other two models. The CSADT data for LED in Liao
et al.26 is selected, which has four accelerated stress levels (Table VII). The normal stress is 40 °C in temperature and 10mA in current.
One simulated LED degradation data in field use are given in Table VIII. The LED fails when its light intensity drops 50% of the initial value.

The original performance data (the light intensity) are transferred into relative degradation by

xi ¼ x0 � xi
x0

(27)

where xi and x0 = 150 are the ith and initial degradation data (Figure 12 and Table VIII).
It is obvious that the LEDs experienced a nonlinear degradation path. Therefore, the Λ(t) = tγ is chosen for ADT modeling and field

life prediction. In the simulation study, the unit-to-unit variability is argued in ADT analysis. We further verify it from the viewpoint of
model selection. Deviance information criterion (DIC) is generally used for Bayesian hierarchical model selection, the one with the
smaller value fits the best.35

DIC ¼ D θð Þ þ pD (28)
Table VII. Constant stress acceleration degradation testing for light-emitting diode

Conditions Contents Values

Accelerated states Stress 1 and 2 (T/°C, I/mA) 140 40, 140 35, 165 40, 165 35
Monitor point (hours) 50, 100, 150, 200, 250
Number of samples 20 (5 light-emitting diodes in each stress level)
Acceleration model φ(s1) = 1/(273.15 + T), ϕ(s2) = log(I)

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297
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Table VIII. Light-emitting diode degradation value for field use

Contents Monitor value

Monitor point (hours) 0 1000 2000 3000 4000 5000
Light intensity (lumen/m2) 150 126.74 112.77 97.20 90.36 84.74
Relative degradation 0 0.1551 0.2482 0.3520 0.3976 0.4369

Figure 12. Constant stress accelerated degradation testing data for light-emitting diodes
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where pD is the number of effective parameters andD θð Þ ¼ Eθ D θð Þ½ � is the posterior mean deviance relied on the unknown parameter
θ and D(θ) =�2log(p(x|θ)) obtained from Eq. (22). Table IX presents the estimation results, which indicate case 1 is the best model for
ADT analysis with a lower DIC value that demonstrates the presence of unit-to-unit variability.

We also compute the reliability results of our model (case 1) with that in Liao et al.26 and Wang et al.14 for comparison, shown in
Figure 13. Note that Liao’s model mainly considered the variability of future stress and nominated the diffusion coefficient to be a
function of accelerated stress (constant in this paper, see assumptions (2) and (4)). The variability of future stress definitely affects
the drift coefficient of Eq. (1) in a dynamic behavior; however, it cannot be ensured as stochastic. The model in Eq. (10) is more general
for capturing this variability mainly in field RUL prediction phase. For Wang’s model, two calibration factors are introduced to modify
the difference between ADT and field data on drift and diffusion coefficients, which is effective in the case when field data are
sufficient. However, for the LED case, only five data in Table VIII are available for the estimates of two calibration factors. Thus, the
problem of small samples causes the results of reliability curve to significantly deviate from the proposed method (Figure 13).
Meanwhile, Wang’s model fails to separate the unit-to-unit variability from the random variability, which demonstrates the superiority
of the proposed method.

The results from Table IX are then used as prior information for field RUL prediction. Figure 14 shows the estimated PDFs of RULs at
each monitor point, which can be further used for maintenance decision-making.
Table IX. The parameter estimation results for light-emitting diode constant stress accelerated degradation testing data in two
cases

Parameters Mean (Parest) std 2.5% 97.5% Deviance information criterion

Case 1 A �3.71 3.20 �9.477 2.57 �301
B1 �716.4 698.4 �2155.0 577.0
B2 0.64 0.72 �0.7157 2.028
γ 0.42 0.025 0.3689 0.4707
σ 0.034 0.0073 0.01925 0.04764
σ1 0.16 0.11 0.003685 0.3691

Case 2 A �3.79 2.422 �8.438 1.129 �280
B1 �943.8 567.5 �2126.0 180.8
B2 0.9418 0.5649 �0.1727 1.983
γ 0.42 0.025 0.3737 0.4726
σ 0.040 0.0053 0.03107 0.05169

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 2281–2297



Figure 13. The reliability curves for the proposed, Liao, and Wang models

Figure 14. The probability density functions of remaining useful life (RULs) for light-emitting diode life prediction

L. LIU ET AL.
5. Conclusions

In this paper, a field RUL prediction framework based on ADT data is proposed based on MWP model for highly reliable products. In
this framework, the ADT data from late research and development phase is used for MWP model identification at accelerated
conditions with the consideration of unit-to-unit variability. The identified MWP model at normal condition is used as the initial
degradation model for field RUL prediction, which will be updated when new measurement are available through STF algorithm.
Unknown parameters are estimated based on the proposed MCMC method. The results in Tables II and V have shown its effectiveness
through Bayesian hierarchical analysis. From the simulation study and the real LED application, it is known that the unit-to-unit
variability has a significant effect on life prediction results (Figures 4, 9, and 13). The results also demonstrate the effectiveness of
the proposed framework on field RUL prediction for both linear and nonlinear scenarios.

The paper aims for field RUL prediction by utilizing accelerated degradation information with field monitoring data. However, such
integration is still restricted to some assumptions. Further research may be given to other data-driven methods according to the
property of degradation path, like Gamma or inverse Gaussian processes.17,36 Meanwhile, model uncertainty may also need to be
considered in both ADT analysis and field RUL prediction as each model has its pros and cons for life prediction. We hope to report
our finding on this issue in the future.
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